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Abstract
The  advancement  of  predictive  models  by  Machine  Learning  Algorithms  (ML)  associated  with  environmental  data  enables  the  improvement  of
models of environmental fragility, which are essential tools for decision-making. This study aimed to derive a prediction of environmental fragility
by  testing  ML  associated  with  environmental  covariates  in  the  state  of  Minas  Gerais.  We  use  physical-environmental  variables  (soil,  geology,
climate,  relief)  with  a  weight  of  fragility  for  the  attributes  and calculation of  the  average to  obtain  a  model  of  Potential  Environmental  Fragility
(PEF). Subsequently, we extracted the PEF values to a 4,800-point grid, which was used to generate a new prediction by ML called PEFML. This
prediction was based on testing five algorithms and a set of 105 environmental covariates. The results indicated that the best-performing PEFML
prediction was the Random Forest model (R2 0.59 and RMSE 0.47), indicating a predominance of the low environmental fragility level. The PEF
and PEFML models have strong correlations (0.7 Pearson); however, PEFML has stronger correlations with other environmental data. Therefore,
the PEFML prediction is a robust model that captures information from covariates and has coherent spatial patterns. 

Keywords: Environmental Fragility Model; Spatial Prediction; Random Forest; Environmental Planning. 

Resumo / Resumen
FRAGILIDADE AMBIENTAL USANDO ALGORITMOS DE APRENDIZADO DE MÁQUINA 

O avanço de  modelos  preditivos  por  Algoritmos  de  Aprendizado de  Máquina  (ML) associados  à  dados  ambientais  possibilita  aprimoramento  de
modelos de fragilidade ambiental, os quais são importantes ferramentas para tomada de decisão. O objetivo desse estudo foi derivar uma predição
de fragilidade ambiental, testando ML associados a covariáveis ambientais no estado de Minas Gerais. Utilizamos variáveis físico-ambientais (solo,
geologia, clima, relevo) com peso de fragilidade para os atributos e cálculo da média obtendo o modelo de Fragilidade Ambiental Potencial (PEF).
Posteriormente, extraímos os valores de PEF para uma grade de 4.800 pontos e usadas para gerar uma nova predição por ML, denominada PEFML.
A predição  foi  com teste  de  cinco  algoritmos  e  conjunto  de  105  covariáveis  ambientais.  Comparamos  os  dois  modelos  de  fragilidade  ambiental
(PEF e PEFML), inclusive com outros dados de riscos/vulnerabilidade/fragilidade. Os resultados indicaram que a predição de PEFML de melhor
desempenho foi o modelo Random Forest (R2 0.59 e RMSE 0.47), indicando predomínio do nível fragilidade baixa. Os modelos de fragilidade PEF
e PEFML têm forte correlação (0.7 Pearson), porém, PEFML possui correlações mais fortes com outros dados ambientais. Portanto, a predição de
PEFML é um modelo robusto que capta informações de covariáveis e possui padrões espaciais coerentes 

Palavras-chave: Modelos de fragilidade ambiental; Predição espacial; Random Forest; Planejamento Ambiental. 

FRAGILIDAD AMBIENTAL MEDIANTE ALGORITMOS DE APRENDIZAJE AUTOMÁTICO 

El avance de los modelos predictivos mediante Machine Learning Algorithms (ML) asociados a datos ambientales permite mejorar los modelos de
fragilidad ambiental, que son herramientas fundamentales para la toma de decisiones. Este estudio tuvo como objetivo derivar una predicción de la
fragilidad  ambiental  mediante  la  prueba  de  ML  asociado  con  covariables  ambientales  en  el  estado  de  Minas  Gerais.  Se  utilizaron  variables
físico-ambientales  (suelo,  geología,  clima,  relieve)  con  peso  de  fragilidad  para  los  atributos  y  cálculo  de  la  media  para  obtener  un  modelo  de
Fragilidad Ambiental Potencial (PEF). Posteriormente, extrajimos los valores de PEF a una cuadrícula de 4800 puntos, que se utilizó para generar
una  nueva  predicción  de  ML,  llamada  PEFML.  Esta  predicción  se  basó  en  la  prueba  de  cinco  algoritmos  y  un  conjunto  de  105  covariables
ambientales.  Los  resultados  indicaron  que  la  predicción  PEFML  con  mejor  desempeño  fue  el  modelo  Random  Forest  (R2  0.59  y  RMSE  0.47),
indicando  un  predominio  del  bajo  nivel  de  fragilidad  ambiental.  Los  modelos  PEF  y  PEFML  muestran  fuertes  correlaciones  (0,7  Pearson);  sin
embargo, PEFML tiene correlaciones más fuertes con otros datos ambientales. Por lo tanto, la predicción PEFML es un modelo robusto que captura
información de covariables y tiene patrones espaciales coherentes. 

Palabras-clave: Modelos de fragilidad ambiental; predicción espacial; Random Forest; Planificación ambiental. 
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INTRODUCTION 
Spatial  modeling  of  environmental  fragility  is  a  crucial  tool  for  territorial  management  and

conservation  of  natural  resources.  In  Brazil,  a  model  of  environmental  fragility  widely  used  is  the
proposal  by  Ross  (1994)  which is  based on the  theory  of  landscape ecodynamics  (Tricart,  1977).  The
studies apply this model in two categories: (i)  potential environmental fragility (PEF), based on slope,
climate, and soil data; (ii) emergent environmental fragility, which adds land use data and demonstrates
vulnerable  areas  associated  with  anthropic  action.  Studies  have  constantly  improved  the  models  of
environmental fragility and methodological adaptations are proposed; an example is the incorporation of
a geological component (Crepani et al., 2001; Spröl e Ross, 2006; Franco et al., 2011; Cruz et al., 2017;
Campos et al., 2019; Costa et al., 2020). Furthermore, the new methodological improvements meet the
future  trend  of  increasingly  using  quantitative  methods  and  robust  analyzes  in  geoscience  studies
(Murray et al., 2009; Padarian et al., 2020). In this scenario, studies have applied new modifications in
the  modeling  of  environmental  fragility,  for  example,  fuzzy  logic,  neural  networks,  multicriteria
analysis, and Bayesian networks (Spörl et al., 2011; Campos et al., 2019; Costa et al., 2020; Amorim et
al., 2021). 

In the scope of robust methods of analysis, there has been a rapid growth in the use of artificial
intelligence, especially with Machine Learning algorithms (ML) in modeling studies in various fields of
geosciences (Bergen et al., 2019; Gomes et al., 2019; Souza et al., 2020; Silva et al., 2023), but still little
applied  to  studies  of  environmental  fragility.  The  advantage  of  ML  is  to  learn  complex  patterns  for
predicting  spatiotemporal  data  using  multiple  data  sources,  e.g.,  environmental  covariates  (Kuhn  e
Johnson,  2013;  Bergen  et  al.,  2019;  Padarian  et  al.,  2020).  Specifically  on  this  aspect,  some  ML
algorithms may have advantage over ot her predictive models, such as the kriging interpolation, which
has  geostatistics  in  its  formulation  and  requires  that  the  entered  data  have  spatial  dependence,  and
sometimes  this  spatial  distribution  pattern  is  non-existent  in  environmental  data  (Wang  et  al.,  2020;
Souza  et  al.,  2022).  Furthermore,  regarding  the  covariates,  studies  have  already  suggested  that  the
insertion of new data (covariates) to assist in modeling environmental fragility is potentially promising,
since environmental vulnerability can be related to several physical-environmental factors (Cruz et al.,
2017; Amorim et al.,  2021); nevertheless, the approach with ML has not yet been adequately tested to
predict models of environmental fragility. 

Currently,  with  advances  in  geoinformation,  there  is  a  vast  supply  of  information that  works  as
covariates  in  modeling  using  ML,  which  can  work  to  improve  models  of  environmental  fragility.  For
example, digital elevation model (DEM) generates several covariates linked to geomorphology (Sena et
al.,  2020);  manipulating  spectral  bands  from  satellite  images  provides  vegetation  indices  (Dias  et  al.,
2021); climate models designed for the globe are updated with some frequency (Hijmans et al., 2005);
and categorical data on environmental information are often made available in the form of a geographic
database  (Heineck  et  al.,  2003;  UFV  et  al.,  2010).  Studies  in  several  areas  show  clear  benefits  of
accuracy in modeling with increments of covariates (Hijmans et al., 2005; Gomes et al., 2019; Souza et
al.,  2022).  Spatial  prediction  by  ML is  especially  necessary  when  a  given  study  area  presents  a  large
amount of spatial data with diverse physical environmental aspects (geodiversity), where studies based
on  qualitative  analysis  are  not  sufficient  or  time-consuming,  or  simpler  prediction  methods  do  not
handle the data well (Bergen et al., 2019; Padarian et al., 2020; Souza et al., 2022). In Brazil, a area with
geodiversity  is  Minas  Gerais  state,  with  varied  geotectonic  contexts  (Machado  e  Silva,  2010;  Costa,
2021),  conditioning  several  geomorphological  aspects,  such  as  surfaces  flattened  by  dissection,
mountain ranges belonging to orogenic contexts, and pedodiversity with the most weathered soils in the
world (Ker, 1997; Silva et al., 2018). In addition, it has a complex geoecological framework (that is, the
presence  of  Cerrado,  Atlantic  Forest,  and  Caatinga)  resulting  from  paleoclimatic  events  (Ab'sáber,
1970).  Therefore,  the  progress  of  environmental  fragility  studies  is  to  connect  various  environmental
aspects,  considering  environmental  heterogeneity,  and  ML  has  a  fundamental  role  in  this  effort.  This
study aims to test machine learning algorithms to predict a new Potential Environmental Fragility (PEF)
model, demonstrating which covariates are potentially explanatory for the levels of fragility in the state
of Minas Gerais. 

Mercator, Fortaleza, v.21, e21034, 2022. ISSN:1984-2201 
2/16

http://www.mercator.ufc.br


ENVIRONMENTAL FRAGILITY BY MACHINE LEARNING ALGORITHMS 

MATERIALS AND METHODS 
STUDY AREA 

The state of Minas Gerais is located in Southeastern Brazil between -23°0’ to -14°0’ S and -51°0’
to  -40°0’  W (Figure  1).  Based on the Köppen climate  type,  there  types  of  climate  in  the  region:  Cwb
(humid temperate climate with dry winter and moderately hot summer), Cwa (humid temperate climate
with dry winter and hot summer), Aw (Savannah tropical climate with dry winter season), and As (Semi
Tropical  Climate  Wet).  The  geological  framework  is  marked  by  four  major  provinces:  (i)  the  São
Francisco  Province,  with  crystalline  rocks,  often  covered  by  metasedimentary  sediments
(Neoproterozoic); (ii) the Mantiqueira Province has massifs and hills developed in granitic/granitoid and
metamorphic rocks (Proterozoic); (iii) the Tocantins Province comprises the granitic/granitoid and schist
(Proterozoic)  folded  bands  at  the  edge  of  the  São  Francisco  Craton;  and  (iv)  the  Paraná  Sedimentary
Basin with mafic rocks covered by Cretaceous sandstones, forming extensive plateaus (Ab'sáber, 1970;
Heineck et al., 2003). The state is marked by the presence of three important biomes – Atlantic Forest,
Cerrado and Caatinga, in addition to transition zones called ecotones (Ab'sáber, 1970).  

Figure 1 - (a) Location of Minas Gerais state, (b) geological provinces of Minas Gerais, (c) Geological
domains of the state of Minas Gerais  

METHODOLOGICAL PROCEDURES 
For the analysis of environmental fragility, we set up a methodological framework summarized in

Figure  2,  with  procedures  executed  in  R  software  (Rcore,  2023).  Previously,  we  applied  a  model  of
Potential  Environmental  Fragility  (PEF),  which  constitutes  the  insertion  of  physical-environmental
variables  (Ross,  1994;  Crepani  et  al.,  2001;  Spörl  et  al.,  2011).  The  variables  inserted  were  climate,
geology, relief, and soil, with weights assigned to the class of each variable. In this weighting step, we
selected environmental fragility values (weights) available in previous studies and assigned the classes
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(Ross, 1994; Crepani et al., 2001; Franco et al., 2011; Spörl et al., 2011; Cruz et al., 2017; Campos et al.,
2019; Amorim et al., 2021). We applied a multi-criteria analysis (Analytical Hierarchy Process - AHP)
to define the relative importance of each variable in relation to environmental fragility, as proposed by
Amorim  et  al.  (2021).  Finally,  we  apply  an  overlap  of  the  variables  using  the  equation  PEF=C+G
+R+S/4;  where  PEF:  Potential  Environmental  Fragility,  C:  climate,  G:  Geology,  R:  Relief  (slope),  S:
Soil. At the end, a result is obtained resulting from the arithmetic mean of the fragility values recorded
in  the  classes.  The  environmental  fragility  orders  obtained  are  classified  as  1:  very  low,  2:  low,  3:
medium, 4: strong, 5: very strong. 

From the PEF map (previous step),  we extracted the values of environmental  fragility from this
map  to  a  4,800-point  grid  randomly  distributed  with  a  minimum  distance  of  3  km.  These  points
constitute the main variable to determine levels of environmental fragility using the Machine Learning
algorithm  technique  (ML);  and  the  result  of  this  procedure  is  to  generate  a  new  map,  here  called
Potential  Environmental  Fragility by Machine Learning (PEFML). However,  to aid prediction by ML,
we set up a database of covariates in raster format, structured in a resolution of 1x1 km: fifty-five spatial
data  from  the  WorldClim  (Hijmans  et  al.,  2005);  42  geomorphometric  covariates  from  Shuttle  Radar
Topographic  Mission  (SRTM)  (USGS,  2023),  extracted  using  the  SAGA  software  (Olaya  e  Conrad,
2009;  Sena  et  al.,  2020);  seven  data  of  gamma-spectrometry  and  one  of  gravimetry  (Heineck  et  al.,
2003),  one  NDVI  calculated  from  satellite  images  of  the  MODIS  (Moderate-Resolution  Imaging
Spectroradiometer)  sensor  of  August  of  the  year  2019  (USGS,  2023),  which  is  the  driest  month  and
shows the most significant differentiation between phytophysinomies. Variables soil, geology, climate,
were not included to avoid biased predictions, as these are part of generating PEF.  

Figure 2 - Flowchart with the sequence: input variable determination (Potential Environmental Fragility
- PEF); creation of covariates database, selection of important covariates with RFE function; test of
algorithms for PEF prediction with 100 runs. In the end, the most accurate algorithm was selected to

model and map PEFML (Potential Environmental Fragility by Machine Learning PEFML). RF:
Random Forest; SVM: Support Vector Machine; GLM: Generalized linear models; LM: Linear model.

R2: R- Squared; RMSE: Root Mean Square Error  
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The previous step generates a data structure with variable values (PEF) and covariate values, but
the  excessive  number  of  covariates  also  favors  creating  overestimated  models  (Gomes  et  al.,  2019;
Padarian et al., 2020). Therefore, we apply a cut-of-correlation to eliminate highly correlated covariates,
as they have a similar contribution to explaining the distribution of an analyzed variable. The function
used  was  find  correlation,  parameterized  by  the  correlation  cutoff  criterion  >0.95  Pearson  (Kuhn  e
Johnson, 2013). Moreover, we applied an important covariate selection tool using a tool widely used in
prediction  models,  called  Recursive  Feature  Elimination  (RFE),  which  also  avoids  overestimated
predictions. RFE is a backwards feature selection method whose central concept is based on eliminating
unimportant covariates (Kuhn e Johnson, 2013). After removing the least important covariate, the RFE
readjusts  the  model  with  a  smaller  set  of  covariates,  restarting  the  process  to  eliminate  the  least
important covariate; and this process is repeated several times until stabilization in which the accuracy
level determined by R-squared (R2)  does  not  decrease.  This  process  is  performed  based  only  on  the
training  dataset  that  was  75%  of  the  samples,  while  the  other  25%  are  used  in  the  testing  process
(holdout-test).  In machine learning, the test phase is a process to evaluate the performance of a model
trained with a test set (i.e., 25% of the samples), which was not seen by the model in the training phase. 

From  the  data  adjusted  to  the  covariates  selected  by  the  RFE,  these  were  used  to  predict  the
environmental fragility for the study area by testing different algorithms. Moreover, for each algorithm
the  process  was  repeated  in  100  runs  using  the  proper  subset  of  covariates  indicated  by  RFE.  In  the
prediction step, five machine learning algorithms were used: Cubist (Quinlan, 1992), Generalized linear
models-GLM  (Hastie  e  Tibshirani,  1987),  Linear  Model  Regression  –  LM  (Faraway,  2016),  Random
Forest  –  RF  (Breiman,  2001),  and  Support  Vector  Machine  –  SVM  (Cortes  e  Vapnik,  1995).  These
models have already been tested in several studies (Brungard et al.,  2015; Faraway, 2016; Morellos et
al.,  2016;  Gomes  et  al.,  2019;  Souza  et  al.,  2022;  Silva  et  al.,  2023).  Furthermore,  using  different
algorithms  is  essential  to  evaluate  the  limitations  related  to  the  prediction  of  the  target  variable  by
algorithms  that  have  different  statistical  routines  (Kuhn  e  Johnson,  2013;  Padarian  et  al.,  2020).  We
considered, in the evaluation of the most accurate algorithm, the metrics of the testing phase (25% of the
samples) and evaluating the overfitting effect comparing with training data (75% of the samples), using
as metrics: R-squared - R2 and root mean squared error – RMSE. 

To observe the variation between the PEFML  and the original method (PEF), a new points grid was
created with 4,800 points at random, with subsequent extraction of the PEFML  and  PEF  values.  Also,  in
this statistical  analysis,  spatial  data of risks and vulnerability available for Minas Gerais were inserted
(Maps:  Degree  conservation,  Erosion  risk,  Natural  vulnerability,  Conservation  priority,  Soil
vulnerability,  Erodibility).  These  maps  are  part  of  the  compiled  work  of  the  agroecological  zoning  of
Minas  Gerais  made  available  in  matrix  data  (raster),  with  intervals  from  1  to  5,  which  is  a  range
compatible with the PEFML  map  (Scolforo  et  al.,  2008).  On  these  data,  we  applied  Pearson  correlation
analysis  and  K-means  cluster  analysis  to  observe  the  relationships  between  these  maps  and  similarity
clusters (Sena et al., 2020). Furthermore, to have a spatial overview of the correlations, we selected the
maps  of  environmental  risk  and  vulnerability  from  the  base  of  Scolforo  et  al.  (2008)  and  applied  a
subtraction calculation using PEFML as a reference, according to the equation: Relation maps=PEFML-EZMi.
Where PEFML: Potential Environmental Fragility Map by Machine Learning, EZM: Environmental zoning
map, i: specific map of the EZM. 

RESULTS 
ENVIRONMENTAL COVARIATES AND MODEL SELECTION 

The PEFML  predictive  process  involved  five  algorithms  and  covariates  database  with  climatic,
topographic, geochemistry and vegetation data, with correlation levels below 0.95 in these covariates. In
applying  the  RFE  function  to  select  important  covariates,  we  observed  that  approximately  twelve
covariates is the maximum number to generate higher R2  and  lower  RMSE  in  the  algorithms  used
(Figure  3  a,b).  The  Random  Forests  algorithm  presented  the  best  performance  in  the  selection  of  the
RFE, selecting only 10 covariates ranked by level of importance (Figure 4). According to the ranking (%
overall),  the  bioclimatic  data  from  WorldClim  were  predominant  and  more  significant.  Among  the
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topographic  covariates,  only  MRRTF  (MRRTF:  multiresolution  ridge-top  flatness  index),  which
indicates  flat  positions  in  high  altitude  areas,  and  MRVBF  (MRVBF:  multiresolution  valley  bottom
flatness index), which shows flat surfaces at the bottom of the valley, were included in the modeling. In
addition to these, a covariate of element K gamma-spectrometry occupied the third level of importance.
This covariate, in addition to indicating the gamma ray spectrometry for potassium (40K),  can  also  be
correlated to a certain volume of the element on the surface. Therefore, Random Forest was selected for
prediction because from 100 runs it generated >R2 (training 0.61, test 0.59) 

Figure 3 - Performance of the models: (a, b) evolution of the metrics R-squared (R2), root mean squared
error (RMSE) in the selection of covariate using Recursive Feature Elimination. (c, d) Metrics of

accuracy R2 and RMSE error, respectively, in 100 runs using covariates selected by RFE. RF: Random
Forest; SVM: Support Vector Machine; GLM: Generalized linear models; LM: Linear model. R2: R-

Squared; RMSE: Root Mean Square Error     

Mercator, Fortaleza, v.21, e21034, 2022. ISSN:1984-2201 
6/16

http://www.mercator.ufc.br


ENVIRONMENTAL FRAGILITY BY MACHINE LEARNING ALGORITHMS 

Figure 4 - The relative importance of covariates, given by the overall percent. Bio 4: temperature
seasonality (standard deviation ∗ 100), MRRTF: multiresolution ridge-top flatness index, Gama K:
gamma spectrometry K-element, MRVBF: multiresolution valley bottom flatness index, Bio 4:

temperature seasonality, Bio 8: mean temperature of wettest quarter, Bio 12: annual precipitation,
BIO18: precipitation of warmest quarter, Bio 13: precipitation of wettest month, BIO15: precipitation

seasonality (coefficient of variation), BIO14: precipitation of driest month  

PREDICTION OF ENVIRONMENTAL FRAGILITY 
The Potential Environmental Fragility map using ML (PEFML)  shows  similar  spatial  patterns  with

the environmental fragility map derived from overlapping variables (PEF) - (Figure 5).  This similarity
attests to the robustness of the ML predictions in learning how a variable's distribution occurs, and this
learning was done using new covariates (Figure 4), therefore, without adding the variables that gave rise
to the map of environmental fragility by the Ross method (i.e., variables shown in Figure 5a). 

However, the prediction using the RF algorithm showed the disadvantage by normalizing values
that have low territorial expressiveness, thus fragility classes below 1.7 and above 4.3 were eliminated,
thus  including  class  1  (very  low)  and  5  (very  strong).  Therefore,  the  alternative  was  to  apply  a
reclassification  of  levels,  according  to  (1.7  to  2.7:  low,  2.8  to  3.4:  average,  3.5  to  4:  strong).  This
separation  criterion  prioritizes  the  class  of  average  fragility,  which  is  predominant  in  the  PEF  map
(Figure 5 b). 

Despite  normalizing  values,  the  ML prediction  generated  a  map with  more  detailed  features,  as
the  prediction  captures  the  features  of  the  inserted  covariates  and  did  not  create  large  homogeneous
zones,  coherently  indicating  areas  of  environmental  fragility  (Figure  5  b,c).  Therefore,  the  spatial
distribution of PEFML showed spatial patterns that denote the influence of input variables recommended in
studies of environmental fragility (Ross, 1994; Spröl e Ross, 2006; Cruz et al., 2017). 

For  example,  the  prediction  captured  the  influence  of  geomorphology in  increasing  the  level  of
environmental fragility in areas of greater slope in the context of the central region, where steep slope
landforms occur (e.g., Espinhaço Mountain Range), and in escarpment areas, such as the plateaus of the
northwest region. The geology and soil factors also contribute to areas of medium and strong fragility,
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especially  in  areas  with  greater  pedological  and  geological  variation,  such  as  the  central  and  northern
regions of the state (Iglesias e Uhlein, 2009; Silva et al., 2018). Furthermore, the northern region has the
added factor of low precipitation weather conditions to contribute to higher levels of fragility; being this
part of the state included in the limit of the Brazilian semiarid. 

Low environmental fragility predominates in most of the state, mainly in areas located to the east.
This configuration also attests that the PEFML  map  is  spatially  consistent,  since,  in  areas  located  to  the
east, most of the input variables in the PEF model also have low levels of environmental fragility, except
for  relief,  because  where  there  is  relief  of  the  Mares  of  Morros  domain,  higher  slopes  prevail  (Figure
5a). The areas of low environmental fragility also have an extension in the northern region, where only
the  geology  variable  has  higher  levels  of  fragility,  therefore,  other  variables  are  responsible  for  this
attenuation.  This  attenuation  effect  by  a  set  of  variables  is  repeated  in  the  western  region  (Triângulo
Mineiro region), because in this region the geology expresses high environmental fragility; however, the
low-slope relief and the predominance of deep soils influence the reduction of values.  

Figure 5 - (a) Input variables with fragility values to generate Potential Environmental Fragility map, (b)
Potential Environmental Fragility map by overlapping environmental variables, (c) Potential

Environmental Fragility map generated by Machine Learning using the Random Forest model (100
runs) (PEFML), and histogram with distribution of classes  

STATISTICAL COMPARISON OF MAPS 
In  addition  to  the  similarity  of  the  spatial  pattern  between  the  PEF  map  by  the  conventional

method and the PEFML map derived from machine learning, there was also a strong statistical correlation
between  these  maps  (Pearson  0.70);  and  these  two  maps  are  in  the  same  cluster  (C3)  (Figure  6),
confirming the similarity level. Furthermore, we compared the environmental fragility maps of the two
methodologies (PEF and PEFML)  with  other  environmental  information  on  environmental  risk  and
vulnerability available for the state of Minas Gerais (Scolforo et al., 2008). The PEFML  map  always
showed  a  superior  correlation  with  risk  and  vulnerability  maps,  indicating  that  it  is  potentially  more
explanatory  of  other  environmental  factors:  soil  vulnerability,  conservation  priority,  degree  of
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conservation, natural vulnerability, erodibility, and erosion risk. On the other hand, the PEF map showed
weak values in all correlations with these maps (Figure 6). 

The spatial comparison between the PEFMLmap  with  the  risk  and  vulnerability  maps  showed  a
correspondence  betwween  the  maps  in  indicaring  areas  with  a  similar  degree  of  fragility;  even
considering that the PEFML map has a smaller range of classes (1.7 to 4.3) .Therefore, in the largest area of
the state, the results show that the variation of environmental fragility values in the PEFML  with  other
maps is in a low range (1 and -1 for each fragility class). This low variation attests that the PEFML map can
capture  information  on  environmental  risk/vulnerability  of  isolated  factors,  suggesting  being  a  more
complete model.   

Figure 6 - Correlation between fragility values using the map algebra method (PEF) and machine
learning algorithm (PEFML). Also, correlation with risk and vulnerability maps using data from the

digital zoning base of Minas Gerais (Scolforo et al., 2008). (All values with a significance level of alpha
= 0.05; Green line for separation of clusters (C1 to C4); black square correlation between PFE and

PEFML       
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Figure 7 - Maps of the relationship between the environmental fragility map (PEFML) (upper left
corner), with each vulnerability and environmental risk map produced from the economic-ecological

zoning of the state of Minas Gerais. Small map in each bottom corner is the risk and vulnerability map.  

DISCUSSION 
MODEL PERFORMANCE 

The spatial prediction of fragility using several ML associated with covariates dataset is a robust
spatial analysis procedure and shows different statistical performances according to selected algorithm.
The most efficient algorithm for choosing covariates for PEFML  prediction  was  RF,  with  the  RFE  tool
adjust to this algorithm, and his algorithm handles high-dimensional data well and allows for non-linear
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relationships between predictors (Breiman, 2001; Gomes et al., 2019). We emphasize the advantage of
using the RFE function in the training phase, eliminating covariates that did not improve the prediction
performance, and this removal creates a simpler and non-overestimated prediction, obeying the principle
of parsimony in modeling (Brungard et al., 2015). The R2 and RMSE metrics were satisfactory (Figure 3
c,d),  especially  when  considering  the  values  of  the  training  and  testing  phases,  which  were  similar,
indicating that in the algorithm execution phase, the model trained and tested satisfactorily (i.e., without
overfitting effect),  and RF has an advantage in mitigating this adverse effect (Breiman, 2001; Were et
al., 2015). Environmental prediction data, especially for large areas, rarely generates R2  greater  than
0.70. The limitation of high metrics stems from factors of low resolution of covariates, lack of covariates
strictly linked to the analyzed variable, and data that do not have simple linear relationships (Malone et
al., 2009; Gomes et al., 2019; Padarian et al., 2020; Souza et al., 2022). 

Considering that the RF carried out the training using covariates indicated by the RFE, some of
these covariates are potentially explanatory for levels of environmental fragility in Minas Gerais (Figure
4). In general, the selected covariates have some relationship with the input variables to determine PEF
(i.e.,  climate,  geology,  relief,  soil).  Therefore,  WorldClim  data  was  predominant  and  higher  in
importance, especially bioclimatic, which are more significant in explaining climate trends (Hijmans et
al., 2005; Gomes et al.,  2019). Topographic information from the SRTM also composes the covariates
selected for prediction; MRRTF and MRVBF that emphasize flat areas in altitude or valleys are part of
this  selection.  These  topographical  covariates  correlate  with  hydrological  processes  of  erosion  and
deposition (Gallant e Dowling, 2003), factors associated with areas of environmental fragility. The third
most  significant  covariate  was  the  potassium  element  gamma-spectrometry  data  (K
gamma-spectrometry). Potassium is a component of minerals (feldspar, biotite, and muscovite), present
at  prominent  levels  in  some  rocks  and  soils  with  low  pedogenetic  development  and/or  eutrophic  soil
(Guevara  et  al.,  2018).  Therefore,  the  selection  of  K  gamma-spectrometry  was  efficient  because  it
combines two pieces of information (soil and geology), which are variables for PEF modeling.  

ENVIRONMENTAL  FRAGILITY  OF  THE  STATE  OF  MINAS
GERAIS 

Regarding the spatial distribution of PEFML  values,  there  is  a  conjunction  of  factors  that  act  to
attenuate  or  increase  levels  of  environmental  fragility.  Several  regions  with  higher  environmental
fragility are associated with areas of greater slope, where the morphogenesis process predominates, and
this aspect is well-marked in the context of Serra do Espinhaço or plateau escarpment zones, a typical
geomorphological feature in Minas Gerais (Callisto et al., 2016; Costa, 2021). In addition, other factors
compete  to  amplify  the  level  of  fragility,  for  example,  in  Serra  do  Espinhaço,  there  are  environments
sustained by the interdependence of dynamic processes between types of vegetation, climate, roughness,
slope, and hydrological flow. An example is the ferruginous rocky "campos rupestres" grasslands “canga
ecosystems”, with acidic soils of low fertility and high levels of metallic cations, sustaining flora with a
high degree of endemism (Urriago-Ospina et al., 2021). 

Geological  factors  also  contribute  to  increased  environmental  fragility,  especially  in  areas  with
great  lithological  variation,  where landscapes are sculpted by processes of differential  denudation.  For
example,  the  Iron  Quadrangle  area  predominates  resistant  rocks  to  the  vertical  lowering  process
(downwearing).  Still,  they  are  fragile  areas  concerning  lateral  retraction  processes  of  escarpments
(backwearing), by erosion of more fragile lithotypes, which form the base of the escarpments (Salgado
et  al.,  2006).  Similar  evolutionary processes,  by differential  erosion involving other  lithological  types,
are recorded in other areas of the state, creating sloping reliefs (Simões et al., 2020; Souza et al., 2020;
Costa, 2021). Another geological context that often has higher levels of fragility are areas of carbonate
rocks, particularly in a Karst geomorphology zone, which tend to present several vulnerability problems
due  to  the  presence  of  fractures  and  cavities  produced  by  karst  processes  (Pessoa  et  al.,  2020).  The
attenuation of environmental fragility in areas of carbonate rocks occurs when there is an association of
low-slope  relief  and  the  presence  of  deep  soils  (Oxisols)  and/or  relatively  eutrophic  soils  (Oxisols  -
Kandic)  –  (Ker,  1997),  creating  more  stable  environments  to  morphogenetic  processes  and
predominating  pedogenesis.  Moreover,  the  geological  and  topographic  conditions  that  indicate  a  high
degree  of  environmental  fragility  may have  an  additional  contribution  from the  climatic  factor,  which
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seems to be the case for the state's northern region, especially as it is in areas subject to desertification
(Barros et al., 2018). Therefore, in this region, the condition of drier climate implants moderate levels of
fragility in an area of flat relief and higher levels when there is association with sloping relief. 

The lowest levels of environmental fragility occur in the eastern portion, a fact resulting from the
geological  influence  with  the  presence  of  granitic  and  metamorphic  rocks  (gneisses)  from  the
Mantiqueira  geological  province  (Figure  1),  rock  systems  with  low  vulnerability  (Cruz  et  al.,  2017).
Deep soils located even in sloping relief areas also contribute to attenuating environmental fragility, as
they  are  more  stable  soils  in  the  landscape  and  the  pedogenesis  process  is  preponderant  (Ker,  1997;
Nunes et al., 2001). However, the levels of environmental fragility can increase in the condition of the
high slope, associated with the presence of shallow soils, such as Inceptisols (Nunes et al., 2001). Low
and  average  fragility  values  also  extend  to  the  western  part  of  the  state,  involving  a  large  part  of  the
Paraná Basin. In this region, flat morphology predominates, with deep soils of low fertility (Ker, 1997).
Although soils  are  dystrophic,  they have good physical  attributes,  and pedogenesis  processes  supplant
morphogenesis (Motta et al., 2002). Therefore, the fragility values obey the configuration of the terrain;
only in higher slope areas do fragility values increase (Martins e Rodrigues, 2012).  

CORRELATION MAPS 
The  fragility  model  by  overlapping  maps  (variables)  (Ross,  1994;  Spröl  e  Ross,  2006),  widely

applied in environmental studies, remains an efficient method to identify areas of environmental fragility
(Spröl e Ross, 2006; Franco et al., 2011; Spörl et al., 2011; Martins e Rodrigues, 2012; Campos et al.,
2019; Anjinho et al., 2021). However, the environmental fragility modeling by machine learning (PEFML),
applied  in  this  study,  also  proved to  be  a  reliable  method,  including results  highly  correlated with  the
original method (Figure 6). In addition, the PEFML  map  was  more  correlated  with  other  data  on  fragility,
vulnerability,  and environmental  risk for the state of Minas Gerais (Scolforo et  al.,  2008).  This higher
correlation  suggests  that  the  ML  prediction  is  as  a  more  explanatory  model  of  other  environmental
factors not present in the PEF modeling, which only uses overlapping variables with assigned weights.
Presumably,  this  higher  correlation  is  a  contribution  of  the  dozens  of  covariates  selected  in  the  RFE
function  step  in  the  training  of  the  model,  because  in  ML  predictive  methods,  the  map  result  is
influenced  by  the  information  of  the  various  covariates  that  help  in  the  predictions  (Brungard  et  al.,
2015; Gomes et al., 2019; Souza et al., 2022). 

The results presented indicate a methodological gain in modeling potential environmental fragility
using  ML.  Basically,  ML  is  a  robust  analysis  method,  and  complex  models  tend  to  produce  more
accurate  predictions  than  simpler  models,  because  in  addition  to  testing  different  well-developed
algorithms in the field of statistical science, the ML prediction has in its structure the incorporation of
covariates that help the prediction (Kuhn e Johnson, 2013; Brungard et al., 2015; Morellos et al., 2016;
Souza et al., 2022). Therefore, the insertion of new covariates that could explain the spatial distribution
of  potentially  fragile  areas  is  also  an  essential  factor,  especially  when  considering  that  environmental
vulnerability  is  associated  with  a  multiplicity  of  physical  and  anthropogenic  variables  (Cruz  et  al.,
2017), being a promising path for studies of environmental fragility. 

CONCLUSIONS 
The potential Environmental Fragility Model obtained by the machine learning algorithm (PEFML)  is

statically  like  the  Potential  Environmental  Fragility  model  (PEF)  acquired  by  the  overlap  of  physical
environmental variables. 

The Random Forest model was the most efficient in predicting PEFML,  using  a  set  of  significant
covariates, with satisfactory performance levels in the validation phase (R2  0.59  and  RMSE  0.47
testing).The PEFML model proved more robust than PEF as it presented a higher level of correlation with
other  risk factors  and environmental  vulnerability,  being a  more explanatory map of  other  factors  that
influence environmental fragility. 

PEFML  indicated  fragility  levels  derived  from  topographic,  geological,  climatic,  and  pedological
effects.  The  areas  of  high  fragility  are  associated  with  mountainous  geomorphology  and  presence  of
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escarpments in plateaus. 
We highlight  that  the  study  area  has  a  regional  scale  dimension,  with  covariates  projected  on  a

small cartographic scale. Therefore, replicating the model (PEFML)  at  the  level  of  small  watersheds  with
field validation is a way to ratify the modeling efficiency. 
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