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Abstract
In recent decades, remote sensing techniques have advanced considerably, enabling effective monitoring of land use, agricultural productivity, and
the  environmental  impacts  of  agricultural  expansion in  the  Caatinga  biome.  This  study integrates  H-αlpha decomposition products  developed by
Cloude-Pottier, Sigma-0 backscatter, polarization ratio, and vegetation indices derived from Sentinel-1 data cube from July 2021 to August 2022.
The  methodological  approach  enhanced  the  quality  and  heterogeneity  of  training  samples,  resulting  in  a  more  accurate  and  spatially  distributed
classified  map.  These  findings  contribute  to  a  deeper  understanding  of  agricultural  dynamics  in  Ipu-CE,  especially  in  areas  with  multiple  crop
cycles, and provide valuable insights to support sustainable agricultural monitoring and policymaking in semi-arid regions. 

Keywords: Monitoring Land Use and Land Cover, SAR Data Cubes, Caatinga Biome. 

Resumo / Résumé
MONITORAMENTO  DE  CULTIVOS  TEMPORÁRIOS  EM  IPU-CE  UTILIZANDO  IMAGENS  DE  SÉRIES  TEMPORAIS  SAR  E
APRENDIZADO DE MÁQUINA 

Nas últimas décadas,  as técnicas de sensoriamento remoto avançaram consideravelmente,  permitindo o monitoramento eficaz do uso da terra,  da
produtividade agrícola e dos impactos ambientais da expansão agrícola no bioma Caatinga. Este estudo integra produtos de decomposição H-alpha
desenvolvidos por Cloude-Pottier, retroespalhamento Sigma-0, razão de polarização e índices de vegetação derivados de dados Sentinel-1 em um
cubo de dados abrangendo julho de 2021 a agosto de 2022. A abordagem metodológica melhorou a qualidade e a heterogeneidade das amostras de
treinamento,  resultando  em  um  mapa  de  classificação  mais  preciso  e  espacialmente  distribuído.  Essas  descobertas  contribuem  para  uma
compreensão mais profunda da dinâmica agrícola em Ipu-CE, especialmente em áreas com múltiplos ciclos de cultivo, e fornecem insights valiosos
para apoiar o monitoramento agrícola sustentável e a formulação de políticas em regiões semi-áridas. 

Palavras-chave: Monitoramento do Uso e Cobertura da Terra, Cubos de Dados SAR, Bioma Caatinga. 

SURVEILLANCE  DES  CULTURES  TEMPORAIRES  DANS  IPU-CE  À  L'AIDE  D'IMAGES  DE  SÉRIES  CHRONOLOGIQUES  SAR
ET D'APPRENTISSAGE AUTOMATIQUE 

Au  cours  des  dernières  décennies,  les  techniques  de  télédétection  ont  considérablement  progressé,  permettant  une  surveillance  efficace  de
l'utilisation des terres, de la productivité agricole et des impacts environnementaux de l'expansion agricole dans le biome de la Caatinga. Cette étude
intègre les produits de décomposition H-alpha développés par Cloude-Pottier, la rétrodiffusion Sigma-0, le rapport de polarisation et les indices de
végétation dérivés des données Sentinel-1 dans un cube de données couvrant la période de juillet 2021 à août 2022. L'approche méthodologique a
amélioré la qualité et l'hétérogénéité des échantillons d'entraînement, ce qui a donné lieu à une carte de classification plus précise et plus distribuée
spatialement. Ces résultats contribuent à une meilleure compréhension de la dynamique agricole dans l'Ipu-CE, en particulier dans les zones à cycles
de cultures multiples, et fournissent des informations précieuses pour soutenir la surveillance et l'élaboration de politiques agricoles durables dans
les régions semi-arides. 

Mots-clés: Surveillance de l'utilisation et de la couverture terrestre, cubes de données SAR, biome de Caatinga. 
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INTRODUCTION 
Synthetic aperture radars (SAR) are remote sensing systems that use microwave pulses to capture

high-resolution images of the Earth’s surface and record the signal backscattered by targets, allowing the
identification  of  their  characteristics  [Paradella  et  al.  2009].  Unlike  optical  sensors,  it  can  collect  data
under  meteorological  and  lighting  conditions  once  SAR  penetrates  clouds,  vegetation,  and  rain  and
operates at night [Le Toan and Floury 1998]. SAR emits energy pulses in the microwave range. It makes
SAR  images  useful  for  continuous  environmental  monitoring  applications  [Moreira  et  al.  2013],
[Kasischke  et  al.  1997],  [Diniz  et  al.  2022].  These  characteristics  and  processing  derived  from  SAR
images,  such  as  Ground  Range  Detected  (GRD),  vegetation  index,  covariance  matrix,  polarimetric
decomposition,  and  band  ratio,  allow  SAR  to  provide  valuable  information  about  the  surface  despite
some  limitations,  such  as  ionospheric  effects  and  data  availability  [Gama  et  al.  2022],  [Ulaby  et  al.
1982]. 

The  increase  in  open  data  availability  and  application  of  remote  sensing  technologies  in
agriculture has transformed how crops are monitored and managed. Using time series and data cubes has
become  particularly  prominent  among  the  strategies  available,  as  it  effectively  captures  the  temporal
evolution  of  agricultural  landscapes  [Adami  et  al.  2012].  These  methodologies  are  vital  for  crop
mapping,  offering  a  thorough  and  precise  representation  of  land  use  and  cover  changes.  Despite  the
potential methodologies and available data, as Sentinel-1 [European Space Agency 2022], there are few
studies in Caatinga Biome1,  especially  in  land  use  and  land  cover  (LULC)  monitoring.  However,  the
Brazilian Chamber of Deputies is considering a bill to establish the National Policy for the Recovery of
Caatinga  Vegetation  [Brazil  2024],  which  was  already  approved  unanimously  in  the  Federal  Senate.
This would aggregate efforts to monitor the Biome. 

In  this  sense,  we  aimed  to  monitor  and  understand  the  dynamics  of  agricultural  activity  in  Ipu,
Ceará,  in  the  Brazilian  Caatinga  Drought  Polygon  [Markham 1967].  We  processed  Sentinel-1  images
from  the  regions  around  Ipu-CE  from  Jul/2021  to  Aug/2022  and  used  time  series  and  data  cube
methodologies  to  enhance  temporary  crops.  Additionally,  we  investigated  the  SAR  features  used  to
improve the classification. We use previous knowledge about the study area, farmer information, field
images,  and  statistical  analyses  to  validate  the  classes  obtained  from our  results.  The  product  has  the
potential to support the implementation of public policies for sustainable agriculture. It contributes to the
improvement of monitoring with less atmospheric interference. 

BACKGROUND 
SAR data provides detailed information on the structure and composition of the Earth’s surface by

receiving microwave pulses reflected from targets. Sentinel-1A is one of large scale open data available
in level 0, 1 and 2 for users application [ESA 2024]. There are some processes that should be applied to
extract  SAR  features  from  Sentinel-1A,  as  thermal  noise  removal,  radiometric  calibration,  geometric
correction,  speckle  filtering,  and  polarimetric  decomposition  are  essential  steps  in  SAR  image
processing.  Radiometric  calibration  adjusts  radar  return  values  to  reflect  surface  properties  correctly
[López  Martinez  2003].  Geometric  correction  ensures  spatial  data  accuracy  by  correcting  geographic
distortions  in  the  image  through  image  modification  [Hanssen  2001].  Speckle  filtering  is  essential  to
reduce the characteristic noise of SAR images. Filters such as Lee, Frost, and Gamma MAP are widely
used [Lee et al. 1994]. Speckle is a granular noise inherent in SAR images due to the coherent nature of
the  radiation  used.  Several  filters  mitigate  this  noise  while  keeping  the  image  information  intact.  The
Lee filter, which smooths speckles by maintaining edges using a statistical approach, is among the most
popular. 

Polarimetric decomposition is a method that splits the SAR signal into parts that represent various
scattering mechanisms, including volumetric, double, and single scattering. H-alpha decomposition is a
polarimetric approach that aims to find and quantify scattering components represented by eigenvectors
and  eigenvalues  [Cloude  and  Pottier  1996].  Unlike  the  result  for  quadrature  polarization  images,  the
result for dual polarization images is significant only for Entropy (H) and Alpha Angle (α), discarding
Anisotropy (A).  With  this  range  of  features,  SAR has  a  number  of  applications,  including  monitoring
deforestation [Doblas et al. 2020], agriculture [Tomppo et al. 2019], water resource management [Liao
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et  al.  2020]  and  studying  natural  disasters  [Barra  et  al.  2016].  For  example,  the  health  of  agricultural
crops  is  monitored,  changes  in  forest  cover  are  mapped  and  floods  are  detected  with  SAR data  [ESA
2024, Sano et al. 2023]. 

The analysis of satellite image time series allows the detection of changes in the earth’s surface
over time, enabling the mapping of seasonal and interannual patterns in vegetation and the identification
of transitions between different land uses [Pelletier et al. 2019]. Despite of the few studies in Caatinga
biome, this technique is widely used in the Cerrado to monitor agricultural expansion, deforestation, and
the  recovery  of  degraded  areas,  providing  crucial  information  for  environmental  management  and
territorial planning [Simões et al. 2020, Picoli et al. 2018, Sano et al. 2007]. 

Data  cubes  are  used  to  perform  time  series  classifications  because  their  structured  format
organizes multi-dimensional remote sensing images, enabling the efficient analysis of large volumes of
data  [Truckenbrodt  et  al.  2019].  Researchers  use  data  cubes  to  detect  changes  over  time  and  extract
relevant  information  for  various  applications,  such  as  agricultural  monitoring,  land  use  studies,  and
environmental  phenomenon  analysis  [Ferreira  et  al.  2020].  Satellite  image  time  series  are  particularly
effective  in  regions  like  Caatinga,  where  native  vegetation  and  agricultural  areas  exist  alongside  one
another in a complex landscape. Utilizing this approach aids in identifying subtle changes in land cover
and  monitoring  annual  agricultural  cycles,  ultimately  contributing  to  sustainable  agriculture  and
environmental conservation [Simões et al. 2020]. 

Machine learning (ML) algorithms,  such as  Random Forest  (RF),  are  widely utilized for  LULC
classification. ML methodologies have demonstrated effectiveness in classifying multitemporal images,
thanks  to  their  capability  to  process  large  datasets  and  capture  the  intricacies  of  land  use  transitions
[Pelletier et al. 2016]. Although there are some LULC products for Caatinga [Ganem et al. 2020], those
remain  mainly  limited  to  optical  images.  When  applied  to  time  series  SAR  images,  these  techniques
facilitate  the  identification of  distinct  crop phenological  patterns,  aiding in  the  differentiation between
vegetation types and management practices.  

MATERIAL E METHODS 
STUDY AREA 

The municipality of Ipu is in the Ceará Northwest (Figure 1), in the Microregion of Ipu and is part
of the influence area of the Ubajara National Park [ICMBIO 2017] and recognized by the touristic Ipu
Waterfall,  area  that  is  part  of  the  “Bica  do  Ipu”  Environmental  Protection  Area  (APA,  acronym from
brazil  portuguese).  The municipality comprises an urban center  at  its  headquarters  and five residential
districts spread over rural areas. More than 46% of the municipality’s formal employees are involved in
agriculture activities, responsible for 23.21% of the Gross Value Added (VAB), which mainly produced
4,330 tons of corn, 1,147 tons of beans in 2023 and more than 13,000 of cattle [IPECE 2024]. 

De  Freitas  et  al.  [De  Freitas  et  al.  2017]  delimited  Ipu’s  environmental  systems  to  be  planned
based  on  the  concept  of  systems,  geosystems  and  geoecology  [Von  Bertalanffy  1975],  [Bertrand  and
Bertrand 2007], [Rodriguez and Silva 2002]. Ipu is composed of Sertaneja Depression, an environment
of stable transition and moderate vulnerability, called Sertão, from brazil portuguese. It has a crystalline
basement with a preserved and moderately dissected flattened surface, with an altitude of 140 - 290 m
(Figure  2).  This  system  could  develop  extensive  cattle,  crops,  vegetables,  mineral  extraction,  dense
surface  drainage,  and  surface  water  extent.  However,  this  system  faces  limitations  related  to  soil
mechanization,  salinization,  water  irregularity,  susceptibility  to  burning,  vegetation  with  low  soil
protection capacity, erosion processes, and overall low sustainability. 
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Figure 1 - Ipu Location Map.  

The Sedimentary Ibiapaba Plateau (SIP) is the second major environmental system, composed of
the Ipu, Tianguá and Jaicós Formations, Ipu being the oldest of the three formations of the Serra Grande
Group  [Claudino-Sales  et  al.  2020].  Its  surface  is  around  900  m  above  sea  level,  recent  studies
characterized this area as a glint, a large escarpment resulting from differential erosion at the edge of a
sedimentary  basin  where  the  sedimentary  material  is  more  resistant  than  the  underlying  or  adjacent
crystalline  material  [Goudie  2004].  It  presents  significant  potential,  including  deep  soils,  high  annual
rainfall indices, subsurface water resources, and most importantly, suitability for agriculture. However,
it also faces limitations such as soil acidity and low fertility, steep slopes with deforestation on hillsides,
and a low potential for surface water availability. The topographic profile A from Figure 2 presents an
individual characteristic of this segment, the anaclinal rivers, which due to the process of differentiated
erosion  run  counter  to  the  escarpment  forming  waterfalls  such  as  Ipu  Waterfall  [Claudino-Sales  et  al.
2020], differently of the pattern from SIP represented in the topographic profile B. 

Finally, the River Plains environmental system is flat, resulting from the fluvial accumulation and
subject to periodic flooding, bordering the river channels and widening in the lower valleys; due to the
intermittent  regime  of  the  rivers,  the  fluvial  plain  occupies  a  small  area,  being  reversed  by  riparian
forests, especially the presence of carnauba trees. The area has potential deep soils, mineral extraction,
water  availability,  irrigation  projects,  and  agricultural  activities.  However,  it  also  faces  significant
limitations  such  as  the  constraints  of  permanent  preservation  areas,  the  risk  of  salinization,  and
challenges  in  urban  areas  during  the  rainy  season,  which  raise  concerns  about  its  long-term
sustainability.  This  characterization  is  fundamental  to  understand  the  geometric  features  that  could
influence in some level the SAR images processing in this study. 
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Figure 2 - Ipu’s Elevation and Topographic Profiles. 

DATA AND PROCESSING 
We used Sentinel-1A level  1  data  in  Single-Look Complex  (SLC)  dual-pol  (VH,  VV) from the

Interferometric Wide-swath mode (IW) between 07/2021 and 08/2022, the 2021/22 agricultural year, to
generate  the  classification  map  (Table  1).  SLC is  obtained  in  the  slant  range,  that  is,  the  line-of-sight
from  the  SAR  to  each  reflecting  object  [ESA  2024].  We  used  the  LULC  MapBiomas  (collection  9)
[MapBiomas 2024] products as reference maps to initially obtain the training samples for the RF model
for our classification. This data is produced on a large scale using metrics derived from Landsat images
of August, September, and October of each year between 1985 and 2023, using RF to classify Brazil. To
be  conservative,  we  selected  two  years  from  the  MapBiomas  to  ensure  overlap  between  our  study
period.  We adopted a methodological  procedure to support  mainly temporary crop monitoring divided
into two steps: 

i)  generating  SAR  features,  and  ii)  integrating  the  35  images  into  a  data  cube  to  verify  the
effectiveness of the SAR features for the temporary crop. 

FEATURE EXTRACTION FROM SAR IMAGES 
We rigorously processed Sentinel-1 data (Figure 3) to extract the 10 features (Table 2), resulting

in over than 230 GB of data. We started with a split, to select the 1 to 7 bursts of interest from the IW1
SAR  image  in  SNAP  software  [SNAP  2024].  We  applied  the  orbit  file  to  geolocate,  removed  the
thermal  noise,  calibrated Sigma 0 (σ0)  to  generate  the  Ground Range Detected (GRD),  and calibrated
the complex for the polarimetric process. 
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Figure 3 - SAR Images Processing. 

Table 2 - Features extracted from the Sentinel-1 data. 

The deburst ensures a continuous and homogeneous image, without burst artifacts. We applied the
covariance  matrix  (C2),  utilized  to  analyze  scattering  mechanisms  and  extract  key  features.  For  the
H-alpha dual polarimetric decomposition (5) we previously applied the Refined Lee (1 look, 5x5). We
obtained  from  the  C2  matrix  the  Dual  Pol  Radar  Vegetation  Index  (DpRVI)  (3)  and  the  ratio  bands
(C11/C22).  We  adjust  the  SAR  image  geometry  for  all  of  the  features  by  applying  a  geometric
correction to ensure an accurate spatial  representation of the data from the integration with the SRTM
3Sec digital elevation model using nearest-neighbor nearest-neighbor resampling methods. 

SAR DATA CUBE CLASSIFICATION  
We  adopted  the  active  learning  approach  to  perform  our  analysis.  We  used  the  open-source

software QGis to clean and increment the training samples and SITS R package [Simões et al. 2021] to
create data cubes from the processed Sentinel-1 images,  extract  time series  from the training samples,
perform  evaluations,  classify  the  images,  estimate  uncertainties,  and  validate  the  classification  results
(Figure  4).  We  divided  this  in  three  main  steps  for  each  and  all  features:  i)  samples  collection;  ii)
samples evaluation and training model training; and, iii) classification and evaluation. 
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Figure 4 - SAR Temporal Classification. 

We  intersected  the  2021  and  2022  LULC  reference  maps,  obtaining  classes  that  remained  the
same and could represent the same class in our time series. We apply a 60m of negative buffer in each
class being conservative to avoid samples in edges. We created a 1km negative buffer of the intersected
area from 1 to 7 bursts in the time series and performed the random sample collection. Additionally, we
refined the samples by manually cleaning them and adding new collections to improve the classification
results.  Therefore,  it  was  necessary  to  harmonize  the  legend  (Table  3).  We  decided  not  to  use  the
“Mosaic  of  Uses”  and  “Other  non  Vegetated  Areas”  classes  for  the  final  classification,  because  they
have not performed well in any testing classification, possibly due there are not large areas of them. We
balanced the raw sample dataset using the SMOTE algorithm [Chawla et al. 2002]. 

Table 3 - Harmonized classes labels. Note: (*) Removed classes. 

We used Self-Organizing Maps (SOM) [Kohonen 1982] using euclidean distance to evaluate the
quality  of  our  Raw and Balance samples  [Santos  et  al.  2021].  SOM transforms high-dimensional  data
into  a  two-dimensional  space,  enabling  the  visualization  and  identification  of  fundamental  patterns
within the data. We conducted sample cleaning in the raw dataset based on the SOM findings, allowing
us to identify potential outliers or inconsistencies in the samples. This process aimed to ensure that the
samples  accurately  represented  the  variability  in  LULC  classes,  grouping  similar  data  and  spreading
differences. Thus, we created a third dataset with clean raw samples. 

To  evaluate  the  generalization  and  robustness  of  the  classification  model  for  Raw,  Balance  and
cleaned samples, we employed the K-Fold cross-validation technique [Stone 1974], widely recognized

Mercator, Fortaleza, v. 24, e24006, 2025 ISSN:1984-2201 
7/18

http://www.mercator.ufc.br


Freitas, A.L.R. - Gama, F.F. - Souza, F.C.

A
R

TI
C

LE
 

for  its  effectiveness  in  validating  predictive  models.  This  technique  helps  reduce  variance  associated
with partitioning the data into training and testing sets, providing a more reliable estimate of the model’s
performance.  The  classification  achieved should  be  consistent  and representative  of  the  entire  dataset.
However,  despite  previous  knowledge  about  the  study  area  and  some  inconsistencies  related  to  the
LULC reference, all results were checked to choose our result map. 

We used the Random Forest R package [Liaw and Wiener 2002] in SITS to classify the SAR Data
Cube.  First,  we  obtained  the  probabilities  of  each  pixel  belonging  to  a  given  class.  Then,  we  applied
spatial smoothing to consider the continuity between neighboring pixels, assigning weights based on the
neighborhood. Finally, we labeled the classes with the highest probability, ensuring a more coherent and
spatially consistent classification. 

We performed the classification evaluation using specialist knowledge. First, the entropy, which
represents  the  uncertainties  associated  with  the  classification,  was  calculated  from the  smoothed  class
probability  rasters.  We  choose  the  result  map  that  performed  better  by  visual  interpretation  between
entropy maps, optical satellite images, the reference LULC and auxiliary data. It was possible due to the
previous knowledge about the study area, associated with photos from the field to reinforce the results
found in the chosen map. Building a relation between the field classes characteristics and the map, and
how geometric municipality structures may affect the final results. 

RESULTS 
TRAINING SAMPLES EVALUATION 

We extracted 7,655 training samples across the study area. After applying the SMOTE technique
to  balance  our  dataset,  which  we  called  Balance  in  Table  4,  we  obtained  1,468  samples.  We  also
evaluated  a  third  dataset  called  Clean,  which  we  used  3,279  after  the  SOM  cleaning  (Table  4).  We
manually  collected  and  cleaned  some  samples  due  to  their  lower  distribution  in  the  study  area.  For
pasture,  we removed points from small  fragments.  We increment samples from Shrubby and Arboreal
and  spread  their  points  into  big  polygons  from  the  LULC  reference.  For  Temporary  Crops,  we
considered them even minor because of their low occurrence. 

Table 4 - Samples by class for all features. 

We extracted the temporal patterns for each class using Matrix C2 (C11 parameter) and GRD (VV
parameter) (Figure 5). We chose these features because of their relation and similar interval values. The
water  pattern  had  lower  values  until  April  2022  and  presented  a  modest  increase  in  May  2022,
corresponding to the end of the rainy period in Caatinga. For Arboreal, we identified a regular decrease
in  values  during  July  and  December  2021,  followed  by  an  increase  reaching  their  maximum between
April and May 2022. 
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Figure 5 - Balance Samples Patterns. 

Despite the modestly more significant values for the Shrubby patterns, Temporary Crops present
similar  values  and  behavior,  presenting  short  increasing  and  decreasing  values  that  oppose  the  main
patterns for classes in Caatinga. However, in Temporary Crops this behaviour represents two cycles in
six months,  starting in January from VV. Urban (City and Village) presents the highest  values for  the
features  for  almost  the  entire  year.  Pasture  significantly  differs  in  value  between  the  dry  and  rainy
seasons and reaches minor values between vegetation classes. 

SOM  effectively  identified  confusion  between  some  classes  across  the  time  series.  While  the
patterns across all  features are consistent,  the behavior within each neuron for specific features varies.
We  chose  to  show  the  SOM  map  based  on  All  Feature  samples  because  it  produces  the  more
homogeneous groups. Figure 6 presents the SOM map (15 × 15) for temporal patterns derived from the
Dual-Pol Vegetation Index feature, as it exhibits variations over time that are more perceptible to human
interpretation. 

Figure 6 - Dual Pol Vegetation Index feature Som Map (All Features). 

We  identified  13  potential  outliers  for  Raw  samples,  10  for  Balance  samples,  and  6  for  Clean
samples.  We considered the outlier  neurons according to three premises:  neurons classified differently
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from  the  neighboring  majority  class,  more  than  three  neurons  away,  and  groups  with  at  least  three
neurons. The SOM analysis using the mixture matrix revealed substantial class mixing, with confusion
levels exceeding 20% for Raw samples, reducing to 15% for Balance samples, and falling below 10%
for Clean samples (Supplementary Material Figure 1). 

The Balance sample achieved better grouping for Temporary Crops, with only one outlier (Figure
6b).  Otherwise,  the  Raw  sample  (Figure  6a)  exhibited  more  dispersed  neurons,  with  connections
forming  diagonal  patterns  or  small  groups  of  two  neurons,  despite  having  just  one  Temporary  Crops
outlier. For Clean samples (Figure 6c), there were three Temporary Crops outliers, but only two neurons
grouped.  We  got  empty  neurons  (No  Class)  in  the  three  evaluated  datasets;  Balance  samples  had  the
highest count (57), followed by Clean (28) and Raw (22). Despite its limitations in grouping Temporary
Crops and being second in terms of No Class neurons, the Clean sample visually demonstrated improved
grouping for the other classes (Figure 6c). 

After  data  cleaning,  the  K-fold  results  provided  a  comprehensive  evaluation  of  model
generalization and robustness across different datasets and feature sets. The All Features configuration
demonstrated  accuracy  values  ranging  from  75.9%  to  79.7%  in  the  Raw  and  Balance  dataset  and
achieved 97.3% in the Clean dataset, indicating a significant improvement due to data cleaning. Similar
trends  were  observed  in  other  feature  sets,  with  Balance  and  Clean  accuracies  consistently
outperforming Raw samples (Table 5). 

Table 5 - K-fold Overall Accuracy (95% confidence). 

The  Original  feature  set  exhibited  the  lowest  performance  among  the  configurations,  achieving
accuracies of 56.2% in Raw and 59.5% in Balance but improving substantially to 94.5% in Clean. On
the other hand, SAR Discriminators achieved the best results for Balance (83.1%) and Clean (97.8%),
outperforming  all  other  feature  sets  in  Balance  and  Clean.  For  Raw  datasets,  accuracies  were
comparable  across  All  Features,  Polarimetric  Decomposition,  and  SAR  Discriminators,  all  hovering
around 75%. 

CLASSIFICATION MAPS 
We produced 12 classified maps (Supplementary Material Figure 2). Water was well classified in

all  maps,  followed  by  the  Urban  (City  and  Village),  mainly  limited  in  the  Original  classification
(Supplementary  Material  Figure  2  B,  F,  and  J)  and  over-classified  in  the  Polarimetric  Decomposition
(Supplementary  Material  Figure  2  C,  G,  and  K).  Shrubby  was  partially  hidden  in  Original  and
Polarimetric Decomposition in Raw and Clean, despite appearing better for the Balance (Supplementary
Material Figure 2 E, F, G, and H). SAR discriminators and all features look similar, but the classification
of  all  features  from  balance  samples  especially  adheres  to  the  visual  and  previous  knowledge  about
municipality dynamics (Supplementary Material Figure 2 E). 

We selected  the  classification  of  All  Features  from Balance  samples  as  our  primary  product  by
visual  analysis  (Figure  7).  The  previous  knowledge  about  the  study  area  permitted  us  to  make  this
decision due to the distribution identified for Temporary Crops and Arboreal classes within the Sertão
region, which cover 28.1 km² and 156 km² of the study area, respectively (Figure 7). The Shrubby class
encompassed the most significant area at 303.5 km² and dominated the municipality with 47.3%, mainly
distributed and being the landscape matrix in the Sertão. 
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Figure 7 - All Features from Balance Samples. 

The  Arboreal  class  is  the  second  largest  area,  representing  24.3%  of  the  study  area,  and  is  the
landscape  matrix  in  the  mountainous  region.  It  is  followed  by  the  Pasture  class,  with  21.2%,  mainly
spread in Sertão and bordering the Temporary Crops and the highway in the mountainous region (Figure
1). The urban (City and Village) and Water classes align with the municipal districts and rivers (Figure
1), occupying 7.4 km² and 10.4 km², respectively. 

FIELD CLASSES CHARACTERISTICS 
We identified  the  relationship  between the  classification  and  the  field  class  characteristics  from

local observations and prior knowledge about the study area. In the first observation, we found a similar
pattern  from  the  LULC  reference  (Figure  8.1)  despite  the  higher  uncertainty  values  between  800  and
1000.  Where  we  identified  the  same  classes  but  in  different  concentrations,  with  more  areas  of
Temporary Crops. The Arboreal class area achieves lower uncertainty values and changes the landscape
matrix previously classified as  Shrubby by the LULC reference in the mountainous region.  In Optical
Image,  we  have  farms,  rivers,  and  urban  areas  mapped  by  federal  and  state  agencies,  confirming  our
results. 

In the second observation,  we identified new areas of Temporary Crops and more Arboreal  and
Pasture classes (Figure 8.2) next to the Urban (City and Village) area, which we confirmed from field
observation  (Figure  10).  We registered  it  from the  mountainous  region  with  a  view of  the  seat  of  the
municipality, from northwest to southeast. The uncertainty reaches significant levels in the escarpment
area, for the Arboreal class achieved middle levels, between 500 and 600, and low levels for the Pasture
and Urban (City and Village) classes, between 300 and 400.  

In  the  third  (Figure  8.3),  we  identified  Arboreal  and  Temporary  Crops  in  the  middle  of  Sertão,
where  the  LULC  reference  classified  as  Shrubby,  Pasture  and  Water  classes.  The  Arboreal  class  was
distributed along the river course,  as presented in Optical Image, with uncertainty values between 600
and  700.  The  Temporary  Crops  areas  are  small,  about  1  ha,  and  next  to  these  areas.  Pasture  reaches
low-uncertainty, between 300 and 400, but the values are even lower to Water, between 10 and 100. 
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Figure 8 - Visual Interpretation. 

Figure 9 - New areas identified (2024).  

DISCUSSION 
Using Machine Learning methods, specifically, Random Forest (RF), combined with SAR image

time  series  properly  processed  to  perform  a  Land  Use  and  Land  Cover  classification,  can  result  in
accurate  maps  with  strong  generalization  capabilities.  A  key  factor  in  this  approach  is  the  need  for
heterogeneous  training  samples  that  exhibit  a  high  degree  of  separability  from other  classes,  reducing
bias.  This  was  guaranteed  in  the  Active  Learning  approach  adopted  during  the  execution  of  the
classification rounds [Crawford et al. 2013]. The pattern curves found for the training samples reflected
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the  expected  characteristics  of  each  class  over  time,  suggesting  that  the  training  samples  adequately
captured the spectral  variations of the classes.  In our results we identified the temporal patterns of the
samples  from  the  Temporary  Crops  (Figure  5),  which  we  could  identify  in  Sertão,  far  from  the
mountains. We confirm this when we analyze Figure 11: i) the corn dynamic involves deforestation (a),
irrigation  (b),  crop  development  (c),  harvest  (d),  processing  (e),  cattle  before  new  planting  (f);  ii)
following the sample pattern. 

Figure 10 - Corn Dynamic in Sertão (2024). 

The choice of a 15 × 15 SOM was driven by the need to adequately distribute the higher number
of  neurons  required  for  the  Raw samples  (7,655),  which  also  supports  the  Balance  (1,468)  and  Clean
(3,279) samples without compromising interpretative value. This ensures the map preserves topological
relationships across datasets with varying sizes, as SOM naturally adapts to the data density in different
map regions. The presence of No Class neurons, particularly in the Balance sample, reflects regions of
the  feature  space  not  represented  by  the  dataset.  Using  a  fixed  grid  size  across  datasets  with  varying
densities is a natural outcome. 

We had some potential outliers in SOM, this suggests that the classes share similar characteristics.
The neuron arrangement highlights the impact of this confusion on class separability over the years, that
are  not  necessarily  the  result  of  mislabeled  samples,  they  can  represent  samples  that  have  different
patterns of land use and land cover classes in space or time, or samples that are not separable using time
series or metrics extracted from them. Overall, the Dual Pol Vegetation Index feature stands out for its
sensitivity  to  temporal  variations,  which  aligns  with  the  goal  of  using  SOM  for  temporal  pattern
analysis.  Future  work  could  explore  adaptive  SOM  grid  sizes  or  weighted  feature  contributions  to
further optimize the map for datasets with high variability in sample sizes. 

Reducing outliers and confusion levels from Raw to Balance and Clean samples demonstrates the
importance of preprocessing steps, such as balance and clean, to refine class separability. However, the
better  grouping of  Temporary  Crops  in  the  Balance sample  emphasizes  that  reducing sample  size  and
class imbalance can enhance cluster formation for minority classes without heavily impacting the overall
map structure. 

Time  series  approach  improves  our  results  by  providing  the  temporal  behavior  of  our  classes,
considering  the  seasonality  of  the  Caatinga  [Brito  et  al.  2023],  differently  from  the  LULC  reference
[MapBiomas 2024]. We evidence it by Figure 11, where in less than 6 months the surface water extent
can  vary  significantly.  The  temporal  pattern  from  Dual  Pol  Vegetation  Index  presents  a  peak  of
vegetation during the rainy season, as can be seen in the 2024 image (Figure 11 A and C). Additionally,
to  classify  a  small  area,  as  a  municipal  scale,  demands  a  large  volume  of  data  processing  and
computational  power,  to  perform  this  time  series  classification.  Known  effects  in  SAR  images  from
geometric characteristics such as shadow, ramp shortening, layover, may contribute to some uncertainty
in classification [Hansen 2001]. Once the municipality had an abrupt difference in altitude between the
Sertão and the mountainous areas (Figure 12). 
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Figure 12 - Geometric Characteristics (2024). 

CONCLUSION 
This  study  demonstrates  the  feasibility  and  relevance  of  using  Sentinel-1  time  series  data

combined  with  data  cube  methodologies  to  monitor  and  classify  agricultural  activities  in  the
municipality of Ipu-CE. We achieved accurate Land Use and Land Cover classifications with significant
generalization capabilities  by leveraging Random Forest  (RF) machine learning methods and adopting
an Active Learning approach to enhance training sample heterogeneity. 

The  temporal  patterns  identified  in  the  dataset  highlighted  the  dynamic  nature  of  agricultural
cycles,  particularly  in  corn  cultivation,  as  influenced  by  deforestation,  irrigation,  crop  development,
harvest, and post-harvest land use. These findings underscore the importance of time series analysis in
capturing  the  seasonal  behavior  specific  to  the  Caatinga  biome,  which  are  less  apparent  in  LULC
reference. 

The challenges associated with processing large datasets and addressing SAR- specific geometric
distortions - such as shadowing, ramp shortening, and relief inversion - were evident,  especially given
the  sharp  altitudinal  gradients  within  the  study  area.  Overall,  this  study’s  results  contribute  to  the
advancement  of  agricultural  monitoring  in  semiarid  regions  by  providing  high-resolution,  temporally
informed  classifications.  The  insights  generated  can  support  the  development  of  public  policies
promoting  sustainable  agricultural  practices  while  improving  resilience  to  environmental  variability.
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Future  work  may  focus  on  scaling  these  methodologies  to  larger  regions  and  integrating  additional
datasets to enhance classification accuracy and applicability further. 
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NOTES 
1- A Scopus search on December 13th 2024, of “SAR” AND “Caatinga” OR “Datacube” returned

14 articles 
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