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Abstract
Map projection is the mathematical process of converting the Earth's surface, considered as a sphere or an ellipsoid, into a map. This conversion is
performed  by  projecting  the  Earth's  points  onto  a  surface,  which  can  be  a  plane,  a  cone,  or  a  cylinder.  Its  basic  objective  is  to  develop  a
mathematical basis for creating maps, essential in areas such as cartography, geodesy, and navigation. It would be ideal if all maps were isometric,
but  for  large  areas,  the  curvature  of  the  Earth  makes  it  impossible,  causing  distortions.  For  the  reasons  above,  the  mathematics  behind  map
projection is complex, but it  is important to understand it.  Among the most varied types, the Mercator projection, created by Gerard Mercator in
1569,  is  a  conformal  cylindrical  projection,  widely  used  in  navigation,  as  it  represents  the  rhumb lines  on  the  map as  straight  lines,  but,  despite
preserving  angles,  it  generates  other  distortions.  The  objective  of  this  article  is  to  present  a  complete  mathematical  derivation  of  the  Mercator
projection  on  the  sphere,  avoiding  simplifications  and  omissions  as  much  as  possible.  As  an  application,  the  deduced  equations  will  be  used  to
implement a visualization of the continents in Python. 

Keywords: Mathematical Cartography, Mapping, Cylindrical Conformal Projection. 

Resumo / Resumen
PROJEÇÃO DE MERCATOR NA ESFERA, UMA DEDUÇÃO SEM LACUNAS MATEMÁTICAS 

Projeção cartográfica é o processo matemático de conversão da superfície da Terra, considerada como uma esfera ou um elipsoide, em um mapa.
Essa conversão é realizada projetando pontos da Terra sobre uma superfície, que pode ser um plano, um cone, ou um cilindro. Assim, seu objetivo
básico é criar uma base matemática para a elaboração de mapas, essenciais em áreas como cartografia, geodesia e navegação. Seria ideal que todos
os  mapas  fossem  isométricos,  porém,  para  grandes  áreas,  a  curvatura  da  Terra  gera  distorções.  Pelas  razões  acima,  a  matemática  das  projeções
cartográficas  é  complexa,  mas  é  importante  compreendê-la.  Entre  os  mais  variados  tipos  existentes,  a  projeção  de  Mercator,  criada  por  Gerard
Mercator em 1569, é uma projeção cilíndrica conforme, muito usada em navegação, pois representa no mapa as linhas de rumo como linhas retas,
mas, apesar de conservar ângulos, gera outras distorções. O objetivo deste artigo é apresentar uma derivação matemática a mais completa possível
da  projeção  de  Mercator  na  esfera,  com  o  propósito  de  evitar  ao  máximo  simplificações  e  omissões,  e,  como  aplicação,  utilizar  as  equações
deduzidas para implementar em Python uma visualização dos continentes. 

Palavras-chave: Cartografia Matemática, Mapeamento, Projeção Cilíndrica Conforme. 

PROYECCIÓN DE MERCATOR SOBRE LA ESFERA: UNA DEDUCCIÓN SIN LAGUNAS MATEMÁTICAS 

La proyección cartográfica es el proceso matemático de convertir la superficie de la Tierra, considerada como una esfera o un elipsoide, en un mapa.
Esta conversión se realiza proyectando puntos de la Tierra sobre una superficie, que puede ser un plano, un cono o un cilindro. Así, su objetivo es
crear una base matemática para la creación de mapas, imprescindible para la cartografía, geodesia y navegación. Sería ideal que todos los mapas
fueran isométricos, sin embargo, para áreas grandes, la curvatura de la Tierra genera distorsiones. Por las razones expuestas, las matemáticas de las
proyecciones cartográficas son complejas, pero es importante comprenderlas. Entre los varios tipos que existen, la proyección Mercator, creada por
Gerard Mercator en 1569, es una proyección cilíndrica conforme, muy utilizada en navegación, ya que representa las líneas de rumbo en el mapa
como  líneas  rectas,  pero,  a  pesar  de  conservar  los  ángulos,  genera  otras  distorsiones.  El  objetivo  de  este  artículo  es  presentar  una  derivación
matemática la más completa posible de la proyección de Mercator sobre la esfera, con el fin de evitar al máximo simplificaciones y omisiones, y,
como aplicación, utilizar las ecuaciones deducidas para implementar una visualización de los continentes en Python. 

Palabras-clave: Cartografía Matemática, Mapeo, Proyección Cilíndrica Conforme. 
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INTRODUCTION 
Consider  the  Earth  as  a  sphere  or  an  ellipsoid.  Its  three-dimensional  surface  must  be  converted

into a flat map. This process of mathematical conversion is known as a map projection (KENNEDY and
KOPP,  2001).  In  more  technical  terms,  the  shape  of  the  Earth  is  typically  described  as  a  solid  of
revolution, either an ellipsoid or a sphere, serving as a reference surface to which all physical points are
associated. The projection of these points occurs onto a projection surface, which can be of three types:
the plane, the cone and the cylinder, with the latter two being capable of unfolding into a plane or flat
map (RICHARDUS and ADLER, 1972). Thus, the aim of the study of map projection aims to create a
mathematical  basis  for  making  maps,  and  consequently  work  on  solving  theoretical  and  practical
problems  in  cartography,  geodesy,  geography,  astronomy,  navigation,  and  other  related  sciences
(FRANČULA, 2004). 

Ideally, a world map would be isometric, meaning it would depict terrain at a reduced scale where
measured distances correspond directly to real-world distances through the scale. It works well for small
areas but becomes impossible for larger regions due to the Earth's curvature, leading to the preference
for plane maps over globes, which are often impractical (VERMEER and RASILA, 2020). It means that
a perfect correspondence between the reference surface and the projection surface is impossible due to
scale  changes  and  distortions:  a  1:1  map  of  the  Earth  is  unfeasible,  and  flattening  its  curved  surface
inevitably causes some deformation (MALING, 1992). 

Nonetheless,  the  mathematical  basis  of  map  projections  is  complex,  which  can  be  intimidating.
While  those  familiar  with  calculus  and  differential  equations  can  find  detailed  books  on  the  subject,
most  users  of  geospatial  data  do  not  need  to  know  the  equations,  as  mapping  software  handles  the
computations.  However,  having  some  understanding  of  the  mathematics  behind  projections  is  still
valuable (KESSLER and BATTERSBY, 2019). In this sense, a lack of understanding of map projections
can  have  serious  consequences,  such  as  hindering  our  grasp  of  international  relations  and  making  us
vulnerable  to  manipulation  by  politicians,  interest  groups,  and  advertisers  who  may  use  maps  in
misleading ways (KIMERLING, MUEHRCKE, and MUEHRCKE, 2005). 

Theoretically,  there  can  be  an  infinite  number  of  map  projections  (LAPAINE,  2019).  One  of
them,  however,  stands  at  the  crossroads  of  a  fascinating  mix  of  stories  involving  navigation,
advancements  in  cartography,  military  accuracy,  media  manipulation,  and  political  propaganda:  The
Mercator projection (MONMONIER, 2004). 

In 1569, Gerard Mercator introduced his ‘Ad Usum Navigatorum’ map projection, which is still
used  for  this  purpose  today  (TOBLER,  2017).  It  is  the  only  conformal  cylindrical  projection,  not
distorting angles between intersecting curves (VERMEER and RASILA, 2020). Furthermore, its normal
aspect is particularly significant in navigation, as it represents rhumb lines as straight lines (LAPAINE
and DIVJAK, 2017). The normal aspect means that the projection wraps a cylinder around the Earth’s
reference  surface,  touching  the  equator.  Hence,  meridians  are  projected  as  equidistant  vertical  lines,
while parallels are horizontal and mathematically spaced (SNYDER, 1987). In the Mercator projection,
the surface of the cylinder is a map, in the sense of the surface unrolled onto the plane (SMETANOVÁ
et al., 2016). 

In general,  the choice of  the reference surface for  the Earth depends on the purpose of  the map
(KESSLER and BATTERSBY, 2019), emphasizing that, although the sphere is mathematically simpler
to  work  with  compared  to  the  ellipsoid,  it  also  cannot  be  flattened  into  a  plane  without  distortions
(DIMITRIJEVIĆ, MILOSAVLJEVIĆ and RANČIĆ, 2023). In this sense, for various applications, as in
navigation  or  in  thematic  mapping  with  small  scales,  it  is  possible  to  use  the  sphere  as  a  reference
surface for the Mercator projection. 

Thus, the aim of this paper is to provide a mathematical derivation as rigorous as possible of the
functions  that  define  the  Mercator  projection  on  the  sphere,  minimizing  gaps,  omissions  and
simplifications. Furthermore, this approach also has a pedagogical value, since the classical literature on
the subject usually presents the equations in their final form or, when derived, often omits intermediate
steps,  potentially  leading  to  difficulties  for  those  without  advanced  mathematical  training.  As  an
application, this paper includes a visualization of the continental contours, generated through an original
implementation in Python, using the derived equations. 
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CLARIFYING THE PROBLEM 
As shown in Figure 1, when using the sphere as a model for the Earth, lines of latitude (parallels)

and lines of  longitude (meridians)  form a reference framework.  This  set  of  meridians and parallels  on
the sphere is called the graticule (OSBORNE, 2013). 

Within this framework: a) the north pole (NP) and the south pole (SP) serve as the convergence
points  for  all  meridians;  b)  meridians  and  parallels  intersect  perpendicularly;  c)  all  meridians  are  of
equal length and meet at the poles; d) parallels are concentric circles evenly distributed along meridians,
and their length decreases as they approach the poles, causing the spacing between meridians along them
to range from zero at the poles to a maximum at the equator; e) the equator is the only parallel where the
spacing between meridians  matches  the  spacing between all  parallels.  The  process  of  transferring  this
system onto a plane surface is the core challenge of map projection (BOWYER and GERMAN, 1959). 

Figure 1 - Lines (or curves) on the surface of the sphere. Source: Authors. 

Functions  F1  and  F2,  known  as  transformation  functions,  enable  the  determination  of  specific
equations  for  a  given  map  projection  using  the  equations  of  general  concept  (BUGAYEVSKIY  and
SNYDER, 1995). 

The  general  concept  leads  to  a  mathematical  classification  of  map  projections,  known  as
parametric. The parametric curves on the sphere are the meridians of longitude and parallels of latitude
(RICHARDUS and ADLER, 1972). That is, 

“The parametric classification is based on the fact that the equations for the location of lines of latitude and of
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longitude on the map in some cases depend on only one of these quantities. For example, in the cylindrical
projections, the lines of longitude depend on longitude alone, and the lines of latitude depend only on latitude.
Here  it  is  immediately  apparent  that  the  parametric  classification  tacitly  assumes  the  normal  case  for  each
projection. It is convenient to require that the origin of the (U,V) system coincides with the respective origin
of  the  parametric  curves  of  the  surface  of  the  sphere.  Hence,  when  the  (φ,λ)  parameterization  is  used,  the
(U,V)  coordinates  are  to  be  interpreted  as  rectangular  coordinates  (X,Y)  in  the  plane”  (TOBLER,  1962,  p.
168). 

Thus,  in  mathematical  terms,  for  a  normal  cylindrical  projection,  equations  (1)  and  (2)  become
equations (3) and (4) (TOBLER, 1962; BUGAYEVSKIY and SNYDER, 1995): 

Clearly,  when representing the surface of  the  Earth  onto a  plane,  the  projection must  be unique
and reversible. In other words, each point on the reference surface should correspond to a single, distinct
point on the projection surface, and vice versa (RICHARDUS and ADLER, 1972). 

Figure 2 shows that, in Mercator projection, the equator is mapped with coordinates on X axis and
the central meridian with coordinates on Y axis (LAPAINE, 2019). Moreover, when the cylinder of the
Mercator projection is unfolded, the meridians appear as straight, parallel lines, while the parallels also
form straight  lines,  intersecting  them at  right  angles  (RICHARDUS and  ADLER,  1972).  It  should  be
noted that on Mercator projection, the projected graticule is aligned to the underlying Cartesian system
so the constant-x grid lines correspond to meridians running north-south (OSBORNE, 2013). 

Figure 2 - The general concept of Mercator projection. Source: Authors. 

Having made these considerations, from now on the task is to find the functions F1 and F2 that
represent the Mercator projection on the sphere, and, additionally, its scale factor. 

THE FIRST GAUSSIAN FUNDAMENTAL QUANTITIES 
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Figure 3 - Parallel of latitude and meridian of longitude of a point P on the sphere. Source: Authors. 

According to the geometry of Figure 3, the Cartesian coordinates of any point on this surface can
be expressed using the equations (5), (6), and (7): 

On the same surface, let P(x,y,z) and Q(x+dx,y+dy,z+dz) be any two points, where dx,dy,dz are
infinitesimal  elements.  Since they are infinitesimal,  the linear  element  ds of  a  curve between P and Q
can be represented by equations (8), (9) and (10) as follows: 

The  elements  (x,y,z)  and  (dx,dy,dz)  have  a  relationship,  which  can  be  found  through  the  total
differentials of equations (5), (6) and (7), as shown in equations (11), (12) and (13): 

Substituting  equations  (11),  (12)  and  (13)  into  equation  (10)  and  expanding,  one  can  obtain
equations (14), (15), and (16) as follows: 
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Equation (16) can be abbreviated as shown in equations (17), (18) and (19), by making: 

The quantities e,f and g are known as the First Gaussian Fundamental Quantities (RICHARDUS
and ADLER, 1972), hereinafter called GQ’s. Therefore, an infinitesimal linear element ds of a curve on
the surface of a sphere can be represented by equation (20) (DEAKIN, 2003): 

The  GQ’s  equations  have  partial  derivatives  that,  for  the  sphere,  can  be  found  by  deriving
equations (5), (6), and (7), according to equations (21) to (26): 
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Substituting  equations  (21)  to  (26)  into  equations  (17),  (18)  and  (19),  yields  equations  (27)  to
(39): 

Once  one  has  the  methodology  for  determining  the  GQ’s  for  the  sphere,  one  can  use  it  to
determine the GQ’s for  the projection surface (normal cylinder),  with the only difference being in the
nomenclature. 

Thus, calling E,F,G the GQ’s in relation to equations (3) and (4),  and dS an infinitesimal linear
element on the surface of the cylinder, one arrive at equations (40) to (43): 

It should be noted that equations (40) to (43) have elements from both the sphere and the cylinder.
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THE  INFINITESIMAL  QUADRILATERAL  ON  THE
SPHERE 

Figure 4 shows an infinitesimal element ds, limited by the curves passing through the point P(φ,λ)
and Q(φ+dφ,λ+dλ) on the surface of the sphere. 

Figure 4 - An infinitesimal quadrilateral on the surface of the sphere. Source: Authors. 

Since  the  value  of  is  constant  along  a  parallel,  this  also  occurs  along  ds.  Therefore,  along  this
section, dφ=0. The same reasoning applies to the meridian represented by , resulting in dλ=0 along ds.
Therefore, equations (44) and (45) become equations (46) to (49): 

Since  they  are  differential  elements,  point  Q  is  infinitesimally  close  to  point  P.  Therefore,  the
rules of plane trigonometry can be used. Because of this, the angle can consider the plane azimuth from
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P to Q (SANTOS, 1985). Thus, at point P, the slope of ds can be written according to equation (50): 

Now, by the Law of Cosines, one can write equations (54), (55) and (56): 

Equating equations (20) and (56) and developing them, one obtains equations (57) to (61): 

Equation (61) defines the angle formed between a parallel and a meridian. Since, for the sphere, in
equation (34) it has already been deduced that f=0, then the cosine of the angle between these two lines
is equal to zero. It is, therefore, an orthogonal intersection between the parallels and the meridians. 

THE SCALE FACTOR 
According to (KRAKIWSKY, 1973, p. 30), “the scale factor describes, at each point on the map

projection,  the  amount  of  distortion  in  length.  This  distortion  is  of  course  due  to  maintaining
conformality and fulfilling other conditions prescribed for the projection”. 

To  find  the  scale  factor,  denoted  here  as  m,  for  any  point  P  on  the  projection  surface,  it  is
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necessary to determine the relationship between the linear differential elements on the projection surface
and  those  on  the  reference  surface.  Thus,  when  a  point  Q  is  infinitesimally  close  to  point  P,  one  can
write Equation (62) (OSBORNE, 2013): 

Since  the  equations  for  dS and ds  have already been derived respectively  in  equations  (43)  and
(20), and considering that f=F=0, one can write equation (63): 

To express equation (63) in terms of the rate of  change,  one can divide both the numerator and
denominator  on  the  right-hand  side  of  the  equation  by
d2
​
, obtaining equation (64): 

The rate of change in equation (64) can be found as follows. It was seen from equation (50) that,
for the sphere, one can write equation (65): 

Developing equation (65), one can obtain the equations (66) and (67): 

Substituting equation (67) into equation (64) and developing, one arrives at equation (68): 

On  a  sphere,  parallel  lines  are  perpendicular  to  meridian  lines,  so  any  two  points  lying  on  the
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same meridian will have an azimuth of either 0 or π, resulting in a sine value of zero. Similarly, any two
points lying on the same parallel will have an azimuth of either π/2 or 3π/2, resulting in a cosine value of
zero. 

Here  lies  the  origin  of  a  condition  that  ensures  compliance:  if  mm  is  equal  to
mp
​
,  equation  (68)  becomes  independent  of  angle  alpha.  To  demonstrate  this,  first  consider  the  equality
between
them
​
 as given in equations (73), and (74): 

In equation (74), as they are equal, their elements will be called K, according to equation (75): 

By substituting equation (75) into equation (68), one obtains equation (76): 

Thus, equation (76) concludes the demonstration that, under the condition given by equation (75),
the scale factor for a point P is independent of direction. Under this condition, it has the same value in
the projection for any direction relative to a given point.  This type of projection is  called a conformal
projection.  According  to  (KRAKIWSKY,  1973,  p.  01),  “conformal  map  projections  are  the  class  of
projections in which angles on the surface to be mapped are preserved, that is, corresponding angles on
the map plane and the surface are equal”. 

For cylindrical projections on the sphere, from equations (75) and (76), this condition can also be
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expressed by equation (77): 

Conformal  projections  maintain  a  consistent  scale  factor  in  all  directions  at  any  given  point,
preserving  the  shape  of  objects.  This  shape  preservation  also  ensures  that  angles  remain  unchanged,
meaning the angle between two lines originating from a point on the reference surface is identical to the
angle  between  their  corresponding  projections.  However,  this  property  has  a  restriction:  it  strictly
applies  to  infinitesimal  areas,  as  determined  by  the  relationship  between  the  infinitesimal  elements  ds
and dS in equation (62). 

Therefore,  the  conformal  property  holds  only  for  small  areas.  It  is  impossible  to  construct  a
conformal projection that accurately represents extensive regions without distortion, as a sphere cannot
be  mapped  onto  a  plane  without  altering  its  shape.  Consequently,  for  larger  areas,  the  scale  factor
changes depending on the position of the points. 

In summary, conformity refers to the uniformity of the scale factor in all directions at a specific
point. However, its value varies depending on the point's location. This variation in the scale factor from
one point to another will be demonstrated below for the Mercator projection. 

THE EQUATIONS OF THE MERCATOR PROJECTION 
To  obtain  the  equations  for  the  X  and  Y  coordinates,  and  for  the  scale  factor  in  the  Mercator

projection, initially the GQ’s e, g, E and G of equations (31), (39), (40) and (42) will be substituted into
equations (70) and (72), to obtain equations (78) and (79): 
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Therefore, from equation (82), in this case, one can write equation (83): 

Substituting equation (83) into equation (81), one can write equation (84): 

Isolating dX in equation (84) one arrives at equation (85): 

To find X, one can integrate, according to equations (86) and (87): 

Substituting  equation  (89)  into  equation  (87),  one  obtains  equations  (90)  and  (91)  (SNYDER,
1987; BUGAYEVSKIY and SNYDER, 1995): 

Mercator, Fortaleza, v. 24, e24014, 2025 ISSN:1984-2201 
13/22

http://www.mercator.ufc.br


Ramos, I. - Seixas, A. - Garnés, S.J.A. - Calado, L.G.L.P

A
R

TI
C

LE
 

To find an equation for Y, the procedure will  be as follows.  The starting point  will  be equation
(73), which allows the equality between equations (78) and (79). By making this equality, one arrive at
equation (93): 

As seen in equation (4), Y is dependent only on . Thus, in a manner analogous to what was done
for X, it can also be done for Y, resulting in equation (94): 

Substituting equations (94),  (83)  and (84)  into equation (93),  and solving for  dY,  one arrives  at
equations (95) and (96): 

Integrating equation (96) and solving, one obtains equations (97) to (104): 
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Now, substituting equation (107) into equation (104), one obtains equation (108): 

Equation (108) can be solved by means of known trigonometric identities.  The first  two will  be
the identities represented by equations (109) and (110): 

Substituting equations (109) and (110) into equation (108) and expanding,  one obtains equation
(111): 
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Equation  (111)  presents  two  known  trigonometric  identities,  according  to  equations  (112)  and
(113): 

Substituting equations (112) and (113) into equation (111), and expanding, one arrives at equation
(114): 

Equation (114) presents another known trigonometric identity, according to equation (115): 

Substituting  equation  (115)  into  equation  (114)  one  finds  equation  (116)  (SNYDER,  1987;
BUGAYEVSKIY and SNYDER, 1995): 
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Equations (91) and (116) can be used to find the GQ’s for  the Mercator  projection,  substituting
them in equations (40), (41) and (42), to obtain equations (121), (122) and (123): 

To  find  E,  it  will  be  necessary  to  calculate  the  partial  derivative  in  equation  (121).  It  can  be
calculated  as  follows.  First,  note  that  Y is  a  composite  function.  Thus,  to  facilitate  the  calculations,  a
first substitution will be made in equation (121), according to equations (124) and (125): 

With equation (124) one can obtain the first partial derivative relevant to the solution, represented
by equation (126): 

The  next  step  is  to  make  the  second  substitution,  this  time  in  equation  (125),  according  to
equations (127) and (128): 

With  equations  (127)  and  (128)  one  can  obtain  the  last  two  partial  derivatives  relevant  to  the
solution, represented by equations (129) and (130): 

Now, since Y is a composite function, using equations (126), (129) and (130), by the Chain Rule
one can write equation (131): 

Mercator, Fortaleza, v. 24, e24014, 2025 ISSN:1984-2201 
17/22

http://www.mercator.ufc.br


Ramos, I. - Seixas, A. - Garnés, S.J.A. - Calado, L.G.L.P

A
R

TI
C

LE
 

Substituting equation (131) into equation (121), one arrives at equation (132): 

Regarding the scale factor for the Mercator projection, one can proceed as follows. Initially one
can use equation (77), apply the square root to all terms, and then leave it as in equation (133): 

Equations (134) and/or (135) shows that the scale factor for the Mercator projection varies with
the  inverse  cosine  of  the  latitude.  This  illustrates,  for  example,  the  increasing  distortion  as  one
approaches the poles,  which makes this  projection unsuitable for  mapping these regions.  Furthermore,
according  to  Osborne  (2013,  p.  32),  “conformality  implies  isotropy  of  scale:  meridian  scale,  parallel
scale and general scale are all equal to secφ in the Mercator projection”. 

VISUALIZATION OF THE MERCATOR PROJECTION 
Equations  (91)  and  (116)  are  the  plotting  equations  for  Mercator  projection  on  the  sphere

(PEARSON,  1990).  As  an  example,  a  Python  program  was  written  to  plot  the  visualization  of  the
continent contours between latitudes of -80° and +80° starting on the equator, with Greenwich as prime
meridian. Figure 5 shows the result, and Annex 1 contains the script. 
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Figure 5 - A Mercator projection visualization. Source: Authors. 

After viewing, and still with the equations in mind, one can see that: 

“The  Mercator  projection  is  a  normal  cylindrical  projection,  with  the  cylinder  conceptually  tangent  to  the
equator. Lines of constant scale follow the parallels of latitude, all of which are straight and run parallel to the
equator,  except  for  the  poles,  which  are  at  infinity.  The  scale  on  the  Mercator  increases  away  from  the
equator.  The  projection  is  conformal,  and  it  is  recommended for  large-scale  conformal  mapping  of  regions
bordering the equator” (SNYDER, 1997, p. 424). 

It  should  also  be  noted  that  the  intervals  between  the  parallels  increase  proportionally  to  secφ
(RICHARDUS  and  ADLER,  1974).  Furthermore,  the  equation  (91)  shows  that  the  longitude  is
transformed linearly  into  X without  any deformation.  This  means  that  the  meridians,  which originally
converge  at  the  poles  on  the  sphere,  are  projected  as  equally  spaced  vertical  lines  on  the  projection
plane. 

There is another feature of the Mercator projection, that is a consequence of its equations, that due
to its importance, should be highlighted. Thus, 

“Picture yourself as a seventeenth-century navigator who knows where he is and where he wants to go. You
plot both locations on a chart, join them with a straight line, and measure the angle your line makes with the
map’s  meridians,  which  run  due  north.  If  the  chart  is  a  Mercator  map,  all  its  meridians  are  straight  lines,
parallel  to  one  another,  and  the  course  you’ve  just  plotted  is  a  rhumb  line,  also  called  a  loxodrome”
(MONMONIER, 2004, p. 01). 

According  to  Bugayevskiy  and  Snyder  (1995,  p.  64),  “only  the  Mercator  projection  shows  all
loxodromes  as  straight  lines”.  However,  they  are  generally  not  the  shortest  path  between  two  points.
Despite this, loxodromes were widely used for planning flight routes until the 1960’s, when they were
replaced by great-circle routes for efficiency (VERMEER and RASILA, 2020). 

CONCLUSION 
The  mathematical  foundations  of  map  projections  are  inherently  complex.  However,  a  solid

understanding  of  this  subject  is  essential  for  making  more  consistent  decisions  in  various  problems
related  to  cartography,  geodesy,  and  geospatial  mapping.  A  common  challenge  in  the  literature,  in
general,  is  the  presence  of  mathematical  derivations  that  often  include  implicit  steps,  making
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comprehension  difficult  for  readers  lacking  an  advanced  mathematical  background.  This  can  lead  to
increased difficulty and, in some cases, discouragement. 

This article aims to provide a rigorous and comprehensive mathematical equations derivation of
the Mercator projection, which is one of the most historically significant and widely used projections in
cartography.  The  methodology integrates  both  mathematical  cartography and a  structured  pedagogical
approach  to  facilitate  understanding.  Particular  emphasis  has  been  placed  on  ensuring  continuity  in
derivations,  minimizing  omissions,  and  maintaining  a  logical  progression  of  equations  to  mitigate
potential conceptual gaps. 

Additionally, the article presents an original Python implementation for visualizing the Mercator
projection.  This  serves  two  primary  purposes:  first,  to  illustrate  the  projection's  fundamental  purpose,
which  is  map  generation,  and  second,  to  demonstrate  that  proficiency  in  mathematical  cartography,
combined with programming skills, enables the development of custom computational tools. This latter
aspect is particularly relevant for validating contemporary mapping software and ensuring the accuracy
of computational implementations in geospatial applications. 
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