ADVANCES IN THE APPLICATION OF DIGITAL ELEVATION MODELS (DEMS) FOR THE EVALUATION OF COASTAL FLOODING

Abstract

Meteoceanographic forces act daily, provoking rapid changes in coastal geomorphology and impacting the human infrastructure located near the sea, principally on low-lying coasts. The current ongoing rise in sea level provoked by climate change is also a major source of concern for local and regional authorities. Geospatial models of coastal flooding are evolving rapidly, together with geomorphometric tools and their applications. These initiatives may permit the implementation of medium-and long term actions to minimize the effects of flooding, although a range of methodological considerations must be taken into account. Digital Elevation Models (DEMs) have become increasingly more accurate due to the integration of altimetric references and vertical data, as well as the increasing quality of the sensors used. For example, the application of the bathtub approach to coastal flooding assessment has been relatively successful. The choice of the flood model should include the careful selection of methods that ensure the most adequate application of the model.

Keywords: Geomorphometry, Low-Lying Coastal Areas, Coastal Surveying, Remote Sensing.

Author Biographies

Deivid Cristian Leal Alves, Universidade Federal do Rio Grande do Sul (UFRGS)

Doutor em Geociências pela Universidade Federal do Rio Grande do Sul (UFRGS). É Técnico em Geoprocessamento pelo Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS) e possui Formação Pedagógica com ênfase em Geografia pelo Centro Universitário Claretiano. É membro dos grupos de pesquisa Geotecnologias e Meio Ambiente (IFRS) e Dinâmica dos Ambientes, Planejamento e Gestão Ambiental (UFCAT). Durante a graduação, curso técnico e pós-graduação, foi bolsista de diferentes órgãos de fomento, tais como: FUNAPE/GO, FAPERGS/RS, CAPES e CNPq, com atividades ligadas a produção audiovisual, ensino profissionalizante, gestão de bacias hidrográficas, drenagem urbana e gerenciamento costeiro. Como complementação técnico-científica, foi estagiário em órgãos públicos, atuando em secretarias municipais e laboratório de topografia, também tendo contato com a docência de nível superior. Entre os anos de 2015 e 2016 se dedicou ao ensino de Geografia no Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Rio Grande, como professor temporário, exercendo, além da docência, a orientação e coorientação de alunos do ensino médio profissionalizante do curso técnico em Geoprocessamento. Entre 2020 e 2021 foi pós-doc vinculado ao Programa de Pós-Graduação em Física da Universidade Federal do Rio Grande (FURG). Atualmente é docente da Universidade Estadual de Mato Grosso do Sul (UEMS). Tem experiência na área de Geociências, sendo que os principais temas ligados a sua produção técnico-científica incluem: modelos digitais de elevação; sistemas de drenagem; geomorfologia costeira; mapeamento hidrológico; aspectos físicos-naturais da ocupação urbana.

Jair Weschenfelder, Federal University of Rio Grande do Sul, Porto Alegre (RS), Brazil.

Doutor em Geociências pela Universidade Federal do Rio Grande do Sul (UFRGS). Professor Associado do Instituto de Geociências e do Programa de Pós-Graduação em Geociências da UFRGS. Pesquisador 2 do CNPq. Atua na área de Geociências, com ênfase em Levantamentos Topográficos e Geodésicos, de Geofísica Marinha, Oceanográficos e GeoAcústicos; Evolução Costeira, Geologia Marinha e Costeira; Geologia e Meio Ambiente.

Marlize Ferreira-Cravo, University of São Paulo, São Paulo (SP), Brazil.

Doutor em Ciências (Fisiologia Geral) pela Universidade de São Paulo (2011). Fez estágio pós doutoral na Universidade Federal do Rio Grande (CNPq e Capes/FAPERGS) de 2011 até 2017. Tem experiência na área de Fisiologia e Bioquímica Comparada, Toxicologia Aquática, Estresse Oxidativo e Nanotoxicologia e Educação. Foi Técnica em Assuntos Educacionais com atividades ligadas ao ensino (médio, técnico e tecnológico), pesquisa (médio, técnico, graduação e pós-graduação ), extensão e inovação junto as Coordenadorias de Ensino, Pesquisa e Extensão e COPE-IFPR Paranaguá. Atualmente é Técnica em Assuntos Educacionais na UFMS- PROGRAD.

Jean Marcel de Almeida Espinoza, Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina (IFSC)

Doutor em Sensoriamento Remoto (UFRGS/2015), Mestrado em Sensoriamento Remoto (UFRGS/2006), graduação em Física (Bach./Lic - FURG/2004), Física Médica (FURG/2007). Atua na área de Sensoriamento Remoto aplicado ao estudo glaciológico, processamento de imagens e sinais digitais e radiometria de reflectância. Tem como foco o estudo do radar. É membro dos seguintes grupos de pesquisa: Geotecnologias e Meio Ambiente (IFRS), Gestão Ambiental em Zonas Costeiras (FURG) e Sensoriamento Remoto (UFRGS). Profissionalmente desenvolve a atividade de professor junto ao IFSC - Câmpus Caçador nas áreas de Física e Fenômenos de Transportes. 

Miguel da Guia Albuquerque, Federal Institute of Education, Science and Technology of Rio Grande do Sul, Rio Grande (RS), Brazil.

Doutor em Geociências pela Universidade Federal do Rio Grande do Sul (2013). Atualmente é professor do quadro permanente - Programa de Pós Graduação em Geografia, colaborador - Programa de Pós Graduação em Gerenciamento Costeiro, docente permanente - Programa de Pós Graduação em Geografia e professor do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul. Tem experiência na área de Geociências, com ênfase em Geomorfologia Costeira, atuando principalmente nos seguintes temas: geotecnologias, erosão costeira, sensoriamento remoto, morfodinâmica praial e riscos ao banho de mar.

References

AGUIAR, L. D. S., AMARO, V. E., VICTOR, P., LUIS, A. Geotecnologias de baixo custo aplicadas à avaliação de risco por inundação em áreas urbanas costeiras em cenários de mudanças climáticas. Anuário do Instituto de Geociências, v. 42, 1, 2018. p. 267-290.
ANTONIOLI, F.; ANZIDEI, M.; AMOROSI, A.; LO PRESTI, V.; MASTRONUZZI, G.; DEIANA, G.; DE FALCO, G.; FONTANA, A.; FONTOLAN, G.; LISCO, S.; MARSICO, A.; MORETTI, M.; ORRÙ, P.E.; SANNINO, G.M.; SERPELLONI, E.; VECCHIO, A. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quaternary Science Reviews, 158, 2017. p. 29-43. doi.org/10.1016/j.quascirev.2016.12.021
ARAUJO, G.H.S.; ALMEIDA, J.R.; GUERRA, A.J.T. Ambiente Urbano e Industrial. In: ARAUJO, G.H.S.; ALMEIDA, J.R.; GUERRA, A.J.T. (ed) Gestão ambiental de áreas degradadas. 4th edn. Bertrand, Rio de Janeiro, 2009. p. 63-73.
BOAK, E.H.; TURNER, I. L. Shoreline Definition and Detection: A review. Journal of Coastal Research 21 (4), 2005. p. 688–703. doi.org/10.2112/03-0071.1
CAMARASA-BELMONTE, A.M.; SORIANO-GARCIÁ, J. Flood risk assessment and mapping in peri-urban Mediterranean environments using hydrogeomorphology. Application to ephemer-al streams in the Valencia region (eastern Spain). Landscape and Urban Planning 104 (2), 2012. p. 189–200. doi.org/10.1016/j.landurbplan.2011.10.009
CASELLA, E.; ROVERE, A.; PEDRONCINI, A.; MUCERINO, L.; CASELA, M.; CUSATI, L.A.; VACCHI, M.; FERRARI, N. & FIRPO, M. Study of wave runup using numerical models and low-altitude aerial photogrammetry: A tool for coastal management. Estuarine, Coastal and Shelf Science, 149, 2014. p. 160-167.
CLAPUYUT, F.; VANACKER, V.; VAN OOST, K. Reproducibility of UAV-based earth topog-raphy reconstructions based on Structure-from-Motion algorithms. Geomorphology, 260, 2016. p. 4-15. doi.org/10.1016/j.geomorph.2015.05.011
COZANNET, G.L.; ROHMER, J.; CAZENAVE, A.; IDIER, D.; VAN DE WAL, R.; WINTER, R.; PEDREROS, R.; BALOUIN, Y.; VINCHON, C.; OLIVEROS, C. Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 73, 2015. p.44-56. doi.org/10.1016/j.envsoft.2015.07.021
DANIELSON, J.J.; POPPENGA, S.K.; BROCK, J.C.; EVANS, G.A.; TYLER, D.J.; GESCH, D.B.; THATCHER, C.A.; BARRAS, J.A. Topobathymetric Elevation Model Development using a New Methodology: Coastal National Elevation Database. Journal Coastal Research SI 76, 2016. p. 75-89. doi.org/10.2112/SI76-008
EAKINS, W.B.; GROTHE, P.R. Challenges in building coastal digital elevation models. Journal of Coastal Research 30 (5), 2014. p. 942–953. doi.org/10.2112/JCOASTRES-D-13-00192.1
FERGUNSON, G.; GLEESON, T. Vulnerability of coastal aquifers to groundwater use and cli-mate change. Nature Climate Change 2, 2012. p. 342-345. doi:10.1038/nclimate1413
FERNANDES, C.E.M. Fundamentos de física para Geociências volume 1: campo terrestre gravítico, deformacional e hidrodinâmico. Interciência, Rio de Janeiro, 2007. p. 2–48.
FLORINSKY, I.V. Digital terrain analysis in soil science and geology. Elsevier, San Diego, 2012. p.7-16.
GESCH, D.B. Analysis of Lidar elevation data for improved identification and delineation of lands vulnerable to Sea-Level Rise. Journal of Coastal Research SI 53, 2009. p. 49–58. doi.org/10.2112/SI53-006.1
GLOBAL FACILITY FOR DISASTER AND RECOVERY – GFDRR. Digital Elevation Models: A guidance Note on how Digital Elevation Models are created and used – includes key defini-tions, sample Terms of reference and how best to plan a DEM-mission. World Bank Group, Washington, 2015. p. 19-38.
GHILANI, C.D.; WOLF, P.R. Elementary Surveying: An Introduction to Geomatics. 13.ed. Prenice Hall, New Jersey, 2011.
GLOOVER, R.E. The pattern of fresh-water flow in a coastal aquifer. Journal of Geophysical Research 64 (4), 1959. p. 357-359. doi.org/10.1029/JZ064i004 p00457
GONZALEZ, R.C.; WOODS, R.E. Digital Image Processing. 2nd edn. Prentice Hall, New Jersey, 2002.p. 617-625.
GOULART, E.S. Variabilidade morfodinâmica temporal e eventos de inundação em um sistema praial com múltiplos bancos. Dissertation, Universidade Federal do Rio Grande, 2014.
GRIBBIN, J.E. Introduction to Hydraulics and Hydrology: With Applications for Stormwater Management. 4th edn. Cengage Learning, Clifton Park, 2013. p. 175-217.
GUIMARÃES, P. V., FARINA, L., TOLDO, E., DIAZ-HERNANDEZ, G., & AKHMATSKAYA, E. Numerical simulation of extreme wave runup during storm events in Tramandaí Beach, Rio Grande do Sul, Brazil. Coastal Engineering, 95, 2015. p. 171–180.
HALLEGATE, S.; GREEN, C.; NICHOLLS, R.J.; CORFEE-MORLOT, J. Future flood losses in major coastal cities. Nature Climate Change 3, 2013. p. 802–806. doi:10.1038/nclimate1979
HENGL, T.; EVANS, I.S. Mathematical and Digital Models of the Land Surface. In: Hengl T, Reuter HI (Eds). Geomorphometry: Concepts, Software, Applications. Elsevier, Amsterdam, 2009. p. 31-64.
HOOVER, D.J.; ODIGIE, K.O.; SWARZENSKI, P.W.; BARNARD, P. Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA. Journal of Hydrology: Regional Studies 11, 2016. p. 234-249. doi.org/10.1016/j.ejrh.2015. 12.055
HUNT, J.C.R. Inland and Coastal Flooding: Developments in Prediction and Prevention. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 363 (1831), 2005. p. 1475-1491. doi.org/10.1098/rsta.2005.1580
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA – IBGE. MAPGEO 2015 documentation.
https://www.ibge.gov.br/geociencias/informacoes-sobre-posicionamento-geodesico/servicos-para-posici
onamento-geodesico/10855-modelo-de-ondulacao-geoidal.html. Accessed 22 july 2019.
JAMES, M.R.; ROBSON, S.; D’OLEIRE-OLTMANNS, S.; NIETHAMMER, U. Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment. Geomorphology 280, 2017. p. 51-66. doi.org/10.1016/j.geomorph.2016.11.021
JENSEN, J.R. Remote Sensing of the Environment: An Earth Resource Perspective. 2th edition. Prentice Hall, Harlow, 2014. p. 1-36.
KRUEL, S. The Impacts of Sea-Level Rise on Tidal Flooding in Boston Massachusetts. Journal of Coastal Research 32 (6), 2016. p. 1302-1309. doi.org/ 10.2112/JCOASTRES-D-15-00100.1
LEAL-ALVES, D.C.; WESCHENFELDER, J.; ALBUQUERQUE, M. G.; ESPINOZA, J. M. A.; FERREIRA_CRAVO, M.; ALMEIDA, L. P. M. Digital elevation model generation using UAV-SfM photogrammetry techniques to map sea-level rise scenarios at Cassino Beach, Brazil. SN Appl. Sci. 2, 2181, 2020. https://doi.org/10.1007/s42452-020-03936-z
LEON, J.X.; HEUVELINK, G.B.M; PHINN, S.R. Incorporating DEM Uncertainty in Coastal Inundation Mapping. PLoS ONE 9 (9), 2014. doi.org/10.1371/journal.pone.0108727
LI Z, ZHU Q.; GOLD, C. Digital Terrain Modelling: Principles and Methodology. CRC Press, Boca Raton, 2005. p 267-284.
LICHTER, M.; FELSENSTEIN, D. Assessing the costs of sea-level rise and extreme flooding at the local level: A GIS-based approach. Ocean and Coastal Management 59, 2012. p. 47-62. doi.org/10.1016/j.ocecoaman.2011.12.020
LONGLEY, P.A.; GOODCHILD, M.F.; MAGUIRE, D.J.; RHIND, D.W. Geographic Information Systems and Science. 3rd edn. Wiley, Danvers, 2010. p. 351-423.
MAIA, N. Z.; CALLIARI, L. J. & NICOLODI, J. L. Analytical model of sea level elevation dur-ing a storm: Support for coastal flood risk assessment associated with cyclone passage. Conti-nental Shelf Research, 124, 2016. p. 23–34.
MARTÍNEZ-GRAÑA, A.; BOSKIB, T.; GOYA, J.L.; ZAZOC, C.; DABRIO, C.J. Coastal-flood risk management in central Algarve: Vulnerability and flood risk indices (South Portugal). Eco-logical Indicators 71, 2016. p. 302-316. doi.org/10.1016/j.ecolind.2016.07. 021
MASTERSON, J.P.; FIENEN, M.N.; THIELER, R.; GESCH, D.B.; GUTIERREZ, B.T.; PLANT, N.G. Effects of sea-level rise on barrier island groundwater system dynamics – ecohydrological implications. Ecohydrology 7, 2014. p. 1064-1071. doi.org/10.1002/eco. 1442
MENDAS, A. The contribution of the digital elevation models and geographic information sys-tems in a watershed hydrologic research. Applied Geomatics, 2 (1), 2010. p. 33-42. doi.org/10.1007/s12518-010-0019-8
MONICO, J.F.G. Posicionamento pelo GNSS: descrição, fundamentos e aplicações. 2nd edn. UNESP, São Paulo, 2008. p. 183-242.
MURDUKHAYEVA, A.; AUGUST, P.; BRADLEY, M.; LABASH, C.; SHAW, N. Assessment of inundation risk from Sea Level Rise and storm surge in Northeastern Coastal National Parks. Journal of Coastal Research 29 (6a), 2013. p. 1-16. doi.org/ 10.2112/JCOASTRES-D-12-00196.1
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION – NOAA. 2017. Detailed Method for Mapping Sea Level Rise Inundation. https://coast.noaa.gov/data/digitalcoast/pdf/slr-inundation-methods.pdf. Accessed 12 September 2017
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION – NOAA. 2013. Sea Level Trends. https://tidesandcurrents.noaa.gov/sltrends/. Accessed 25 September 2017
NEX, F.; REMONDINO, F. UAV for 3D mapping applications: a review. Applied Geomatics. 6 (1), 2014. p. 1-15. doi.org/10.1007/s12518-013-0120-x
NICHOLLS, R.J.; HANSON, S.E.; LOWE, J.A.; WARRICK, R.A.; LU, X.; LONG A.J. Sea-level scenarios for evaluating coastal impacts. WIREs Climate Change, 5, 2014. p. 129-150. doi.org/10.1002/wcc.253
OLAYA, V. Basic Land-Surface Parameters. In: Hengl, T.; Reuter, H.I. (Eds). Geomorphometry: Concepts, Software, Applications. Elsevier, Amsterdam, 2009. p. 141-170.
PAPROTNY, D.; TEREFENKO, P. New estimates of potential impacts of sea level rise and coastal floods in Poland. Natural Hazards and Earth System Sciences 85 (2), 2017. p. 1249–1277. doi.org/10.1007/s11069-016-2619-z
PECKHAM, S.D. Geomorphometry and Spatial Hydrologic Modelling. In: Hengl, T., Reuter, H.I. (Eds). Geomorphometry: Concepts, Software, Applications. Elsevier, Amsterdam, 2009. p. 3-30.
PIKE, R.J.; EVANS, I.S.; HENGL, T. Geomorphometry: A Brief Guide. In: Hengl, T.; Reuter, H.I. (Eds). Geomorphometry: Concepts, Software, Applications. Elsevier, Amsterdam, 2009. p. 141-170.
POPPENGA, S.; WORSTELL, B. Evaluation of airborne Lidar elevation surfaces for propaga-tion of coastal inundation: the importance of hydrologic connectivity. Remote Sensing 7 (9), 2015. p. 11695-11711. doi.org/10.3390/rs70911695
POPPENGA, S.K.; WORSTELL, B.B. Hydrologic Connectivity: Quantitative Assessments of Hydrologic-Enforced Drainage Structures in an Elevation Model. Journal of Coastal Research SI 76, 2016. p. 90-106. http://doi.org/10.2112/SI76-009
POULTER, B.; HALPIN, P.N. Raster modelling of coastal flooding from sea-level rise. International Journal of Geographical Information Science 22 (2), 2008. p. 167-182. doi.org/10.1080/13658810701371858
SIMÕES, R. S.; OLIVEIRA, U. R.; ESPINOZA, J. M.; ALBUQUERQUE, M. G.; LEAL-ALVES, D. C. Uso de drone de pequeno porte para análise costeira: enfoque metodológico. Revista Brasileira de Geografia Física v.12, n.02, 2019. p. 622-640.
ROTZOLL, K.; FLETCHER, C.H. Assessment of groundwater inundation as a consequence of sea-level rise. Nature Climate Change 3, 2013. p. 477-481. doi.org/10.1038/nclimate1725
SCHIMID, K.; HADLEY, B.; WATERS, K. Mapping and Portraying Inundation Uncertainty of Bathtub-Type Models. Journal of Coastal Research 30 (3), 2014. p. 548-561. doi.org/10.2112/JCOASTRES-D-13-00118.1
SEENATH, A., WILSON, M.; MILLER, K. Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: Which is better for guiding coastal management? Ocean and Coastal Management 120, 2016. p. 99-109. doi.org/10.1016/ j.ocecoaman.2015.11.019
SILVA, A. F.; TOLDO JR., E. E.; ROOIJEN, A. V.; ABREU, C. F.; RODRIGUES-FILHO, J. L.; ROCHA, R.S.; AQUINO, R. S. Inundação costeira por elevação do nível do mar em Imbé e Tramandaí - RS. Revista Brasileira de Cartografia, vol. 72, n. 3, 2020. p. 541-557. doi.org/10.14393/rbcv72n3-48706
SILVA, C.G.; PATCHINEELAM, S.M.; NETO, J.A.B.; PONZI, V.R.A. Ambientes de sedimentação costeira e processos morfodinâmicos atuantes na linha de costa. In: NETO, J.A.B; PONZI, V.R.A.; SICHEL, S.E. Introdução à Geologia Marinha. Interciência, Rio de Janeiro, 2004. p. 219-242.
TARBOTON, D. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33 (2), 1997. p. 309-319. doi.org/10.1029/96WR03137
VALERIANO, M.M. Dados topográficos. In: FLORENZANO, T.G. (Org.). Geomorfologia: conceitos e tecnologias atuais. Oficina de Textos, São Paulo, 2008. p. 73-104.
VIANNA, H. D.; CALLIARI, L. J. Variabilidade do sistema praia-dunas frontais para o litoral norte do Rio Grande do Sul (Palmares do Sul a Torres, Brasil) com o auxílio do Light Detection and Ranging – Lidar. Pesquisas em Geociências, 42 (2), 2015. p. 141-158.
WADEY, M.P.; COPE, S.N.; NICHOLLS, R.J.; MCHUGH, K.; GREWCOCK, G.; MASON, T. Coastal flood analysis and visualisation for a small town. Ocean and Coastal Management 116, 2015. p. 237-247. http://doi.org/10.1016/j.ocecoaman.2015.07.028
WDOWINSKI, S.; BRAY, R.; KIRTMAN, B.P.; WU, Z. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean and Coastal Management 126, 2016. p. 1-8. doi.org/10.1016/ j.ocecoaman.2016.03.002
WEBSTER, T.L.; FORBES, D.L.; DICKIE, S.; SHREENAN, R. Using topographic lidar to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Canadian Journal Remote Sensing 30 (1), 2004. p. 64–76. http://doi.org/ 10.5589/m03-053
WESTOBY, M.J.; BRASINGTON, J.; GLASSER, N.F.; HAMBREY, M.J.; REYNOLDS, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applica-tions. Geomorphology 179, 2012. p. 300-314. doi.org/10.1016/j.geomorph.2012.08. 021
WONG, P.P.; LOSADA, I.J.; GATTUSO, J.P.; HINKEL, J.; KHATTABI, A.; MCINNES, K.L.; SAITO, Y.; SALLENGER, A. Coastal systems and low-lying areas. In: CLIMATE CHANGE 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, 2014. p. 361-409.
YUNUS, A.P.; AVTAR, R.; KRAINES, S.; YAMAMURO, M.; LINDBERG, F.; GRIMMOND, C.S.B. Uncertainties in Tidally Adjusted Estimates of Sea Level Rise Flooding (Bathtub Model) for the Greater London. Remote Sensing 8 (5), 366, 2016. p. 1-23. doi.org/10.3390/rs8050366
Published
20/04/2021
How to Cite
LEAL ALVES, Deivid Cristian et al. ADVANCES IN THE APPLICATION OF DIGITAL ELEVATION MODELS (DEMS) FOR THE EVALUATION OF COASTAL FLOODING. Mercator, Fortaleza, v. 20, apr. 2021. ISSN 1984-2201. Available at: <http://www.mercator.ufc.br/mercator/article/view/e20012>. Date accessed: 18 sep. 2021. doi: https://doi.org/10.4215/rm2021.e20012.
Section
ARTICLES