CHARACTERIZATION AND ANALYSIS OF GULLY EROSION IN SOUTHERN BRAZIL WITH THE ASSISTANCE OF UNMANNED AERIAL VEHICLE

Abstract

The ability to understand the erosive mechanisms of a gully is of great importance for determine its dynamics and the best forms of intervention. Thus, with the assistance of high-resolution data obtained with UAV, this work seeks to characterize and analyse the erosive mechanisms that act in a gully in south Brazil. For this, a survey was carried out using a multirotor UAV, with a flight height of 150m, and an overlaid area of 67ha. The data obtained were processed using the SfM-CMVS (Structure from Motion - Clustering Multi-View Stereo) workflow, generating a Digital Terrain Model with a spatial resolution of 12,6 cm/pixel. However, mass movements proved to be the main lateral and vertical advancement agent of the gully, predominating in the upper portions of the gully. In the lower third of the gully there was a predominance of mass movements and lowering areas related to the contact of sandy rock lenses with more clayey lenses. The products generated in this work provide a database that has the potential to assist in work to be developed, serving as a basis for the study of gully genesis, for the identification of the best mitigation measures, or as an initial framework for the study of evolution of this erosive feature. So, make it necessary more in-depth study of the real impacts of silviculture on erosive mechanisms.

Keywords: Gully Erosion, Structure From Motion–Multi-View Stereo (SfM–MVS), Erosion Mechanisms, Mass Movements.

Author Biographies

Lucas Krein Rademann, Federal University of Santa Maria, Santa Maria (RS), Brazil

PhD Student in Geography, Environmental Geology Laboratory, Geoscience Department, University of Santa Maria, Brazil.

Romario Trentin, Federal University of Santa Maria, Santa Maria (RS), Brazil

PhD in Geography, Environmental Geology Laboratory, Geoscience Department, University of Santa Maria, Brazil.

Luis Eduardo de Souza Robaina, Federal University of Santa Maria, Santa Maria (RS), Brazil

PhD in Geosciences, Environmental Geology Laboratory, Geoscience Department, University of Santa Maria, Brazil.

References

Aber, J. S., Marzolff, I., Ries, J. B., & Aber, S. E. W. (2019). Gully-Erosion Monitoring. In Small-Format Aerial Photography and UAS Imagery (pp. 259–271). Elsevier.
Albuquerque, F. N. B. de. (2006). Agentes, processos e feições erosivas em voçoroca conectada à rede de drenagem do Rio Coreaú, Ceará. Revista da Casa da Geografia de Sobral, 8(1), 11–20.
Bartley, R., Bainbridge, Z. T., Lewis, S. E., Kroon, F. J., Wilkinson, S. N., Brodie, J. E., & Silburn, D. M. (2014). Relating sediment impacts on coral reefs to watershed sources, processes and management: A review. Science of the Total Environment, 468–469, 1138–1153.
Bartley, R.; Goodwin, N.; Henderson, A.E.; Hawdon, A.; Tindall, D.;Wilkinson, S.N.; Baker, B. A. (2016). Comparison of Tools for Monitoring and Evaluating Channel Change; Report to the national environmental science programme; Reef and Rainforest Research Centre Limited: Cairns, Australia.
Bergonse, R. V., & Reis, E. J. (2011). Theoretical constraints to gully erosion research: Time for a re-evaluation of concepts and assumptions?: THEORETICAL CONSTRAINTS TO GULLY EROSION RESEARCH. Earth Surface Processes and Landforms, 36(11), 1554–1557.
Bernatek-Jakiel, A., & Poesen, J. (2018). Subsurface erosion by soil piping: Significance and research needs. Earth-Science Reviews, 185, 1107–1128.
Betts, H. D., Trustrum, N. A., & Rose, R. C. D. (2003). Geomorphic changes in a complex gully system measured from sequential digital elevation models, and implications for management. Earth Surface Processes and Landforms, 28(10), 1043–1058.
Cabral, I. L. L. (2004) Depressões interfluviais e voçorocas articuladas à rede de drenagem: o exemplo das bacias dos rios Ibicuizinho, Areal do Paredão, Cacequi, Santa maria e Ibicuí. Tese (Doutorado em Geografia), Universidade de São Paulo, São Paulo.
Cabral, I. L. L.; Prado, R, J.; Cabral, T. L (2009). Indicadores morfodinâmicos que sugerem movimentos neotectônicos no divisor de águas dos rios Ibicuí/Jacuí - depressão periférica - RS. XII Congresso da Associação Brasileira de Estudos do Quaternário.
Carraro, C.C (1974). Mapa Geomorfológico do Estado do Rio Grande do Sul. FAPERGS – UFRGS/Instituto de Geociências. 1: 1.000.000.
Clapuyt, F.; Vanacker, V.; Van Oost, K. (2016). Reproducibility of uav-based earth topography reconstructions based on structure-from-motion algorithms. Geomorphology, 260, 4–15.
de A. P. Bacellar, L., Netto, A. L. C., & Lacerda, W. A. (2005). Controlling factors of gullying in the Maracujá Catchment, southeastern Brazil. Earth Surface Processes and Landforms, 30(11), 1369–1385.
d’Oleire-Oltmanns, S., Marzolff, I., Peter, K., & Ries, J. (2012). Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sensing, 4(11), 3390–3416.
Dong, Y., Xiong, D., Su, Z., Duan, X., Lu, X., Zhang, S., & Yuan, Y. (2019). The influences of mass failure on the erosion and hydraulic processes of gully headcuts based on an in situ scouring experiment in Dry-hot valley of China. CATENA, 176, 14–25.
Drumond, F. N. (2006). Caracterização hidrossedimentológica e dos processos evolutivos de voçoroca em área de rochas gnáissicas do alto Rio das Velhas (MG). Revista Brasileira de Geomorfologia, 10.
Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. (2016). Image-based surface reconstruction in geomorphometry—Merits, limits and developments. Earth Surf. Dyn., 4, 359–389.
Frankl, A., Stal, C., Abraha, A., Nyssen, J., Rieke-Zapp, D., De Wulf, A., & Poesen, J. (2015). Detailed recording of gully morphology in 3D through image-based modelling. CATENA, 127, 92–101.
Furukawa, Y., Curless, B., Seitz, S. M., & Szeliski, R. (2010). Towards Internet-scale multi-view stereo. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1434–1441.
Gafurov, A. M. (2017). Utilização de Veículo Aéreo Não-Tripulado para a avaliação de erosão de uma voçoroca. Registros Acadêmicos da Universidade de Kazan, série Ciências Naturais, v. 159, p. 654 – 667.
Glendell, M., McShane, G., Farrow, L., James, M. R., Quinton, J., Anderson, K., Evans, M., Benaud, P., Rawlins, B., Morgan, D., Jones, L., Kirkham, M., DeBell, L., Quine, T. A., Lark, M., Rickson, J., & Brazier, R. E. (2017). Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion: Unmanned aerial vehicles and ground photography to estimate erosion. Earth Surface Processes and Landforms, 42(12), 1860–1871.
Gómez Gutiérrez, Á., Schnabel, S., Lavado Contador, F., De Sanjosé, J. J., Atkinson, A. D. J., Pulido Fernández, M., & Sánchez Fernández, M. (2018). Studying the influence of livestock pressure on gully erosion in rangelands of SW Spain by means of the UAV+SfM workflow. Boletín de La Asociación de Geógrafos Españoles, 78, 66–88.
Gómez-Gutiérrez, Á., Schnabel, S., Berenguer-Sempere, F., Lavado-Contador, F., & Rubio-Delgado, J. (2014). Using 3D photo-reconstruction methods to estimate gully headcut erosion. CATENA, 120, 91–101.
Hosseinalizadeh, M., Kariminejad, N., Chen, W., Pourghasemi, H. R., Alinejad, M., Mohammadian Behbahani, A., & Tiefenbacher, J. P. (2019). Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree). Geomorphology, 329, 184–193.
Jack Koci,J.; Jarihani, B.; Leon, J.X.; Sidle, R.C.; Wilkinson, S.N.; Bartley, R. (2017). Assessment of UAV and Ground-Based Structure from Motion with Multi-View Stereo Photogrammetry in a Gullied Savanna Catchment. ISPRS Int. J. Geo-Inf. 6, 328.
James, M.R.; Robson, S. (2012). Straightforward reconstruction of 3d surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf., 117, F03017.
Kaiser, A., Neugirg, F., Rock, G., Müller, C., Haas, F., Ries, J., & Schmidt, J. (2014). Small-Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Moroccan Gully Morphology Using Structure from Motion. Remote Sensing, 6(8), 7050–7080.
Kirkby, M. J., & Bracken, L. J. (2009). Gully processes and gully dynamics. Earth Surface Processes and Landforms, 34(14), 1841–1851.
Koci, J., Sidle, R. C., Jarihani, B., & Cashman, M. J. (2019). Linking hydrological connectivity to gully erosion in savanna rangelands tributary to the Great Barrier Reef using Structure‐from- Motion photogrammetry. Land Degradation & Development.
Liu, K., Ding, H., Tang, G., Na, J., Huang, X., Xue, Z., Yang, X., & Li, F. (2016). Detection of Catchment-Scale Gully-Affected Areas Using Unmanned Aerial Vehicle (UAV) on the Chinese Loess Plateau. ISPRS International Journal of Geo-Information, 5(12), 238.
Marchiori, J. N. C., & Alves, F. D. S. (2014). Campos de areia e silvicultura no oeste do Rio Grande do Sul: Enfoque fitogeográfico. Balduinia, 0(23), 01–20.
Marden, M., Fuller, I. C., Herzig, A., & Betts, H. D. (2018). Badass gullies: Fluvio-mass-movement gully complexes in New Zealand’s East Coast region, and potential for remediation. Geomorphology, 307, 12–23.
Martínez-Casasnovas, J. A., Ramos, M. C., & García-Hernández, D. (2009). Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain). Earth Surface Processes and Landforms, 34(14), 1927–1937.
Marzolff, I., & Poesen, J. (2009). The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system. Geomorphology, 111(1–2), 48–60.
Mathias, D. T., Cunha, C. M. L., & de Carvalho, P. F. (2010). Avaliação de técnicas de monitoramento de processos erosivos acelerados em área peri-urbana – São Paulo. VI Seminário Latino Americano de Geografia Física. p. 13.
Nobajas, A., Waller, R. I., Robinson, Z. P., & Sangonzalo, R. (2017). Too much of a good thing? The role of detailed UAV imagery in characterizing large-scale badland drainage characteristics in South-Eastern Spain. International Journal of Remote Sensing, 38(8–10), 2844–2860.
Oliveira, M. A. T. (2005) Processos Erosivos e Preservação de Áreas de Risco de Erosão por Voçorocas. Em A. T. Guerra, Erosão e Conservação dos Solos: Conceitos Temas e Aplicações (pp. 57-101). Rio de Janeiro: Bertrand Brasil.
Ouédraogo, M.M.; Degré, A.; Debouche, C.; Lisein, J. (214). The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate dems of agricultural watersheds. Geomorphology, 339–355.
Parkner, T., Page, M. J., Marutani, T., & Trustrum, N. A. (2006). Development and controlling factors of gullies and gully complexes, East Coast, New Zealand. Earth Surface Processes and Landforms, 31(2), 187–199.
Peter, K. D., d’Oleire-Oltmanns, S., Ries, J. B., Marzolff, I., & Ait Hssaine, A. (2014). Soil erosion in gully catchments affected by land-levelling measures in the Souss Basin, Morocco, analysed by rainfall simulation and UAV remote sensing data. CATENA, 113, 24–40.
Phillips, J. D. (2015). Badass geomorphology: BADASS GEOMORPHOLOGY. Earth Surface Processes and Landforms, 40(1), 22–33.
Pinto, B. L. (2018). Dinâmica geomorfológica de voçorocas no município de Tucano – Bahia [Dissertação de Mestrado]. Universidade Federal de Sergipe.
Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. (2003). Gully erosion and environmental change: Importance and research needs. CATENA, 50, 91–133.
Rademann, L. K., & Trentin, R. (2020). Novas geotecnologias aplicadas ao estudo geomorfológico: Exemplo de morfometria da Voçoroca do Areal, Cacequi-RS. GeoTextos, 16(1).
Robaina, L. E. S.; Neto, S. F.; Paula, P. M.; Pereira, V. P. (2002). Processo Erosivo acelerado no RS: Voçorocamento no município de Cacequi. Revista Geografia. Rio Claro, v. 27(2), p. 109-120.
Robaina, L. E. S.; Trentin, R. (2004). Degradação dos solos: Problema ambiental no Sudoeste Gaúcho. Interface, Porto Nacional, TO. v.1, n.1, p. 29-41.
Rossato, M. S. (2011). Os climas do Rio Grande do Sul: Variabilidade, tendências e tipologia. Tese (Doutorado em Geografia), Universidade Federal do Rio Grande do Sul.
Schonberger, J. L., & Frahm, J.-M. (2016). Structure-from-Motion Revisited. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4104–4113.
Smith, M. W., Carrivick, J. L., & Quincey, D. J. (2015). Structure from motion photogrammetry in physical geography. Progress in Physical Geography, 40, 1–29.
Silva, M. D. (2012). Os cultivos florestais do pampa, no sul do Rio Grande do Sul: desafios, perdas e perspectivas frente ao avanço de novas fronteiras agrícolas. FLORESTA, v. 42, n. 1, p. 215 – 226, Curitiba.
Starkel, L. (2011). Paradoxes in the development of gullies. Landform Analysis.
Stumpf, A., Malet, J.-P., Allemand, P., Pierrot-Deseilligny, M., & Skupinski, G. (2015). Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology, 231, 130–145.
Suertegaray, D. M. A.; Morelli, L. A. (2010). Conflitos da silvicultura em áreas em processo de arenização: Sudoeste do Rio Grande do Sul. Em MOREIRA, I; TRAGINO, I., Desertificação, desenvolvimento sustentável e agricultura familiar: Recortes no Brasil, em Portugal e na África (p. 193-200). João Pessoa: Editora da Universidade da Paraíba.
Stöcker, C., Eltner, A., & Karrasch, P. (2015). Measuring gullies by synergetic application of UAV and close-range photogrammetry—A case study from Andalusia, Spain. CATENA, 132, 1–11.
Turner, D., Lucieer, A., & Watson, C. (2012). An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing, 4(5), 1392–1410.
Vanmaercke, M., Poesen, J., Van Mele, B., Demuzere, M., Bruynseels, A., Golosov, V., Bezerra, J. F. R., Bolysov, S., Dvinskih, A., Frankl, A., Fuseina, Y., Guerra, A. J. T., Haregeweyn, N., Ionita, I., Makanzu Imwangana, F., Moeyersons, J., Moshe, I., Nazari Samani, A., Niacsu, L., … Yermolaev, O. (2016). How fast do gully headcuts retreat? Earth-Science Reviews, 154, 336–355.
Vanmaercke, M., Panagos, P., Vanwalleghem, T., Hayas, A., Foerster, S., Borrelli, P., Rossi, M., Torri, D., Casali, J., Borselli, L., Vigiak, O., Maerker, M., Haregeweyn, N., De Geeter, S., Zgłobicki, W., Bielders, C., Cerdà, A., Conoscenti, C., de Figueiredo, T., … Poesen, J. (2021). Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Science Reviews, 218, 103637.
Verdonk, S. C. (2015). Gully volume estimates using UAV Photometry. Master Thesis, University of Utrecht, p. 80. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314.
Wijdenes, D.J.O., Poesen, J., Vandekerckhove, L., Nachtergaele, J. and De Baerdemaeker, J. (1999), Gully-head morphology and implications for gully development on abandoned fields in a semi-arid environment, Sierra de Gata, southeast Spain. Earth Surf. Process. Landforms, 24: 585-603.
Zegeye, A. D., Langendoen, E. J., Steenhuis, T. S., Mekuria, W., & Tilahun, S. A. (2020). Bank stability and toe erosion model as a decision tool for gully bank stabilization in sub humid Ethiopian highlands. Ecohydrology & Hydrobiology, 20(2), 301–311.
Published
04/02/2023
How to Cite
RADEMANN, Lucas Krein; TRENTIN, Romario; ROBAINA, Luis Eduardo de Souza. CHARACTERIZATION AND ANALYSIS OF GULLY EROSION IN SOUTHERN BRAZIL WITH THE ASSISTANCE OF UNMANNED AERIAL VEHICLE. Mercator, Fortaleza, v. 21, feb. 2023. ISSN 1984-2201. Available at: <http://www.mercator.ufc.br/mercator/article/view/e21022en>. Date accessed: 26 apr. 2024. doi: https://doi.org/10.4215/rm2022.e21022.
Section
ARTICLES