CARACTERIZACIÓN Y ANÁLISIS DE LA EROSIÓN DE BARRANCO EN EL SUR DE BRASIL CON AYUDA DE VEHÍCULO AÉREO NO TRIPULADO

##plugins.pubIds.doi.readerDisplayName## https://doi.org/10.4215/rm2022.e21022

Resumen

La capacidad de comprender los mecanismos erosivos de un barranco es de gran importancia para determinar su dinámica y las mejores formas de intervención. Así, con la ayuda de datos de alta resolución obtenidos con UAV, este trabajo busca caracterizar y analizar los mecanismos erosivos que actúan en un barranco en el sur de Brasil. Para ello, se realizó un levantamiento utilizando un UAV multirotor, con una altura de vuelo de 150m, y un área superpuesta de 67ha. Los datos obtenidos se procesaron mediante el flujo de trabajo SfM-CMVS (Structure from Motion - Clustering Multi-View Stereo), generando un Modelo Digital de Terreno con una resolución espacial de 12,6 cm/pixel. Sin embargo, los movimientos de masas demostraron ser el principal agente de avance lateral y vertical del barranco, predominando en las porciones superiores. En el tercio inferior del barranco predominaron los movimientos de masas y áreas de descenso relacionados con el contacto de lentes de roca arenosa con lentes más arcillosos. Los productos generados en este trabajo brindan una base de datos que tiene el potencial de ayudar en el trabajo a desarrollar, sirviendo como base para el estudio de la génesis de barrancos, para la identificación de las mejores medidas de mitigación, o como marco inicial para el estudio de evolución de esta característica erosiva. Luego, hace necesario un estudio más profundo de los impactos reales de la silvicultura sobre los mecanismos erosivos

Palabras-clave: Erosión de Cárcavas, Estructura a Partir del Movimiento: Estéreo Multivista (sfM-MVS), Mecanismos de Erosión, Movimientos en Masa.

Biografía del autor

##submission.authorWithAffiliation##

PhD Student in Geography, Environmental Geology Laboratory, Geoscience Department, University of Santa Maria, Brazil.

##submission.authorWithAffiliation##

PhD in Geography, Environmental Geology Laboratory, Geoscience Department, University of Santa Maria, Brazil.

##submission.authorWithAffiliation##

PhD in Geosciences, Environmental Geology Laboratory, Geoscience Department, University of Santa Maria, Brazil.

Citas

Aber, J. S., Marzolff, I., Ries, J. B., & Aber, S. E. W. (2019). Gully-Erosion Monitoring. In Small-Format Aerial Photography and UAS Imagery (pp. 259–271). Elsevier.
Albuquerque, F. N. B. de. (2006). Agentes, processos e feições erosivas em voçoroca conectada à rede de drenagem do Rio Coreaú, Ceará. Revista da Casa da Geografia de Sobral, 8(1), 11–20.
Bartley, R., Bainbridge, Z. T., Lewis, S. E., Kroon, F. J., Wilkinson, S. N., Brodie, J. E., & Silburn, D. M. (2014). Relating sediment impacts on coral reefs to watershed sources, processes and management: A review. Science of the Total Environment, 468–469, 1138–1153.
Bartley, R.; Goodwin, N.; Henderson, A.E.; Hawdon, A.; Tindall, D.;Wilkinson, S.N.; Baker, B. A. (2016). Comparison of Tools for Monitoring and Evaluating Channel Change; Report to the national environmental science programme; Reef and Rainforest Research Centre Limited: Cairns, Australia.
Bergonse, R. V., & Reis, E. J. (2011). Theoretical constraints to gully erosion research: Time for a re-evaluation of concepts and assumptions?: THEORETICAL CONSTRAINTS TO GULLY EROSION RESEARCH. Earth Surface Processes and Landforms, 36(11), 1554–1557.
Bernatek-Jakiel, A., & Poesen, J. (2018). Subsurface erosion by soil piping: Significance and research needs. Earth-Science Reviews, 185, 1107–1128.
Betts, H. D., Trustrum, N. A., & Rose, R. C. D. (2003). Geomorphic changes in a complex gully system measured from sequential digital elevation models, and implications for management. Earth Surface Processes and Landforms, 28(10), 1043–1058.
Cabral, I. L. L. (2004) Depressões interfluviais e voçorocas articuladas à rede de drenagem: o exemplo das bacias dos rios Ibicuizinho, Areal do Paredão, Cacequi, Santa maria e Ibicuí. Tese (Doutorado em Geografia), Universidade de São Paulo, São Paulo.
Cabral, I. L. L.; Prado, R, J.; Cabral, T. L (2009). Indicadores morfodinâmicos que sugerem movimentos neotectônicos no divisor de águas dos rios Ibicuí/Jacuí - depressão periférica - RS. XII Congresso da Associação Brasileira de Estudos do Quaternário.
Carraro, C.C (1974). Mapa Geomorfológico do Estado do Rio Grande do Sul. FAPERGS – UFRGS/Instituto de Geociências. 1: 1.000.000.
Clapuyt, F.; Vanacker, V.; Van Oost, K. (2016). Reproducibility of uav-based earth topography reconstructions based on structure-from-motion algorithms. Geomorphology, 260, 4–15.
de A. P. Bacellar, L., Netto, A. L. C., & Lacerda, W. A. (2005). Controlling factors of gullying in the Maracujá Catchment, southeastern Brazil. Earth Surface Processes and Landforms, 30(11), 1369–1385.
d’Oleire-Oltmanns, S., Marzolff, I., Peter, K., & Ries, J. (2012). Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sensing, 4(11), 3390–3416.
Dong, Y., Xiong, D., Su, Z., Duan, X., Lu, X., Zhang, S., & Yuan, Y. (2019). The influences of mass failure on the erosion and hydraulic processes of gully headcuts based on an in situ scouring experiment in Dry-hot valley of China. CATENA, 176, 14–25.
Drumond, F. N. (2006). Caracterização hidrossedimentológica e dos processos evolutivos de voçoroca em área de rochas gnáissicas do alto Rio das Velhas (MG). Revista Brasileira de Geomorfologia, 10.
Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. (2016). Image-based surface reconstruction in geomorphometry—Merits, limits and developments. Earth Surf. Dyn., 4, 359–389.
Frankl, A., Stal, C., Abraha, A., Nyssen, J., Rieke-Zapp, D., De Wulf, A., & Poesen, J. (2015). Detailed recording of gully morphology in 3D through image-based modelling. CATENA, 127, 92–101.
Furukawa, Y., Curless, B., Seitz, S. M., & Szeliski, R. (2010). Towards Internet-scale multi-view stereo. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1434–1441.
Gafurov, A. M. (2017). Utilização de Veículo Aéreo Não-Tripulado para a avaliação de erosão de uma voçoroca. Registros Acadêmicos da Universidade de Kazan, série Ciências Naturais, v. 159, p. 654 – 667.
Glendell, M., McShane, G., Farrow, L., James, M. R., Quinton, J., Anderson, K., Evans, M., Benaud, P., Rawlins, B., Morgan, D., Jones, L., Kirkham, M., DeBell, L., Quine, T. A., Lark, M., Rickson, J., & Brazier, R. E. (2017). Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion: Unmanned aerial vehicles and ground photography to estimate erosion. Earth Surface Processes and Landforms, 42(12), 1860–1871.
Gómez Gutiérrez, Á., Schnabel, S., Lavado Contador, F., De Sanjosé, J. J., Atkinson, A. D. J., Pulido Fernández, M., & Sánchez Fernández, M. (2018). Studying the influence of livestock pressure on gully erosion in rangelands of SW Spain by means of the UAV+SfM workflow. Boletín de La Asociación de Geógrafos Españoles, 78, 66–88.
Gómez-Gutiérrez, Á., Schnabel, S., Berenguer-Sempere, F., Lavado-Contador, F., & Rubio-Delgado, J. (2014). Using 3D photo-reconstruction methods to estimate gully headcut erosion. CATENA, 120, 91–101.
Hosseinalizadeh, M., Kariminejad, N., Chen, W., Pourghasemi, H. R., Alinejad, M., Mohammadian Behbahani, A., & Tiefenbacher, J. P. (2019). Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree). Geomorphology, 329, 184–193.
Jack Koci,J.; Jarihani, B.; Leon, J.X.; Sidle, R.C.; Wilkinson, S.N.; Bartley, R. (2017). Assessment of UAV and Ground-Based Structure from Motion with Multi-View Stereo Photogrammetry in a Gullied Savanna Catchment. ISPRS Int. J. Geo-Inf. 6, 328.
James, M.R.; Robson, S. (2012). Straightforward reconstruction of 3d surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf., 117, F03017.
Kaiser, A., Neugirg, F., Rock, G., Müller, C., Haas, F., Ries, J., & Schmidt, J. (2014). Small-Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Moroccan Gully Morphology Using Structure from Motion. Remote Sensing, 6(8), 7050–7080.
Kirkby, M. J., & Bracken, L. J. (2009). Gully processes and gully dynamics. Earth Surface Processes and Landforms, 34(14), 1841–1851.
Koci, J., Sidle, R. C., Jarihani, B., & Cashman, M. J. (2019). Linking hydrological connectivity to gully erosion in savanna rangelands tributary to the Great Barrier Reef using Structure‐from- Motion photogrammetry. Land Degradation & Development.
Liu, K., Ding, H., Tang, G., Na, J., Huang, X., Xue, Z., Yang, X., & Li, F. (2016). Detection of Catchment-Scale Gully-Affected Areas Using Unmanned Aerial Vehicle (UAV) on the Chinese Loess Plateau. ISPRS International Journal of Geo-Information, 5(12), 238.
Marchiori, J. N. C., & Alves, F. D. S. (2014). Campos de areia e silvicultura no oeste do Rio Grande do Sul: Enfoque fitogeográfico. Balduinia, 0(23), 01–20.
Marden, M., Fuller, I. C., Herzig, A., & Betts, H. D. (2018). Badass gullies: Fluvio-mass-movement gully complexes in New Zealand’s East Coast region, and potential for remediation. Geomorphology, 307, 12–23.
Martínez-Casasnovas, J. A., Ramos, M. C., & García-Hernández, D. (2009). Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain). Earth Surface Processes and Landforms, 34(14), 1927–1937.
Marzolff, I., & Poesen, J. (2009). The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system. Geomorphology, 111(1–2), 48–60.
Mathias, D. T., Cunha, C. M. L., & de Carvalho, P. F. (2010). Avaliação de técnicas de monitoramento de processos erosivos acelerados em área peri-urbana – São Paulo. VI Seminário Latino Americano de Geografia Física. p. 13.
Nobajas, A., Waller, R. I., Robinson, Z. P., & Sangonzalo, R. (2017). Too much of a good thing? The role of detailed UAV imagery in characterizing large-scale badland drainage characteristics in South-Eastern Spain. International Journal of Remote Sensing, 38(8–10), 2844–2860.
Oliveira, M. A. T. (2005) Processos Erosivos e Preservação de Áreas de Risco de Erosão por Voçorocas. Em A. T. Guerra, Erosão e Conservação dos Solos: Conceitos Temas e Aplicações (pp. 57-101). Rio de Janeiro: Bertrand Brasil.
Ouédraogo, M.M.; Degré, A.; Debouche, C.; Lisein, J. (214). The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate dems of agricultural watersheds. Geomorphology, 339–355.
Parkner, T., Page, M. J., Marutani, T., & Trustrum, N. A. (2006). Development and controlling factors of gullies and gully complexes, East Coast, New Zealand. Earth Surface Processes and Landforms, 31(2), 187–199.
Peter, K. D., d’Oleire-Oltmanns, S., Ries, J. B., Marzolff, I., & Ait Hssaine, A. (2014). Soil erosion in gully catchments affected by land-levelling measures in the Souss Basin, Morocco, analysed by rainfall simulation and UAV remote sensing data. CATENA, 113, 24–40.
Phillips, J. D. (2015). Badass geomorphology: BADASS GEOMORPHOLOGY. Earth Surface Processes and Landforms, 40(1), 22–33.
Pinto, B. L. (2018). Dinâmica geomorfológica de voçorocas no município de Tucano – Bahia [Dissertação de Mestrado]. Universidade Federal de Sergipe.
Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. (2003). Gully erosion and environmental change: Importance and research needs. CATENA, 50, 91–133.
Rademann, L. K., & Trentin, R. (2020). Novas geotecnologias aplicadas ao estudo geomorfológico: Exemplo de morfometria da Voçoroca do Areal, Cacequi-RS. GeoTextos, 16(1).
Robaina, L. E. S.; Neto, S. F.; Paula, P. M.; Pereira, V. P. (2002). Processo Erosivo acelerado no RS: Voçorocamento no município de Cacequi. Revista Geografia. Rio Claro, v. 27(2), p. 109-120.
Robaina, L. E. S.; Trentin, R. (2004). Degradação dos solos: Problema ambiental no Sudoeste Gaúcho. Interface, Porto Nacional, TO. v.1, n.1, p. 29-41.
Rossato, M. S. (2011). Os climas do Rio Grande do Sul: Variabilidade, tendências e tipologia. Tese (Doutorado em Geografia), Universidade Federal do Rio Grande do Sul.
Schonberger, J. L., & Frahm, J.-M. (2016). Structure-from-Motion Revisited. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4104–4113.
Smith, M. W., Carrivick, J. L., & Quincey, D. J. (2015). Structure from motion photogrammetry in physical geography. Progress in Physical Geography, 40, 1–29.
Silva, M. D. (2012). Os cultivos florestais do pampa, no sul do Rio Grande do Sul: desafios, perdas e perspectivas frente ao avanço de novas fronteiras agrícolas. FLORESTA, v. 42, n. 1, p. 215 – 226, Curitiba.
Starkel, L. (2011). Paradoxes in the development of gullies. Landform Analysis.
Stumpf, A., Malet, J.-P., Allemand, P., Pierrot-Deseilligny, M., & Skupinski, G. (2015). Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology, 231, 130–145.
Suertegaray, D. M. A.; Morelli, L. A. (2010). Conflitos da silvicultura em áreas em processo de arenização: Sudoeste do Rio Grande do Sul. Em MOREIRA, I; TRAGINO, I., Desertificação, desenvolvimento sustentável e agricultura familiar: Recortes no Brasil, em Portugal e na África (p. 193-200). João Pessoa: Editora da Universidade da Paraíba.
Stöcker, C., Eltner, A., & Karrasch, P. (2015). Measuring gullies by synergetic application of UAV and close-range photogrammetry—A case study from Andalusia, Spain. CATENA, 132, 1–11.
Turner, D., Lucieer, A., & Watson, C. (2012). An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing, 4(5), 1392–1410.
Vanmaercke, M., Poesen, J., Van Mele, B., Demuzere, M., Bruynseels, A., Golosov, V., Bezerra, J. F. R., Bolysov, S., Dvinskih, A., Frankl, A., Fuseina, Y., Guerra, A. J. T., Haregeweyn, N., Ionita, I., Makanzu Imwangana, F., Moeyersons, J., Moshe, I., Nazari Samani, A., Niacsu, L., … Yermolaev, O. (2016). How fast do gully headcuts retreat? Earth-Science Reviews, 154, 336–355.
Vanmaercke, M., Panagos, P., Vanwalleghem, T., Hayas, A., Foerster, S., Borrelli, P., Rossi, M., Torri, D., Casali, J., Borselli, L., Vigiak, O., Maerker, M., Haregeweyn, N., De Geeter, S., Zgłobicki, W., Bielders, C., Cerdà, A., Conoscenti, C., de Figueiredo, T., … Poesen, J. (2021). Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Science Reviews, 218, 103637.
Verdonk, S. C. (2015). Gully volume estimates using UAV Photometry. Master Thesis, University of Utrecht, p. 80. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314.
Wijdenes, D.J.O., Poesen, J., Vandekerckhove, L., Nachtergaele, J. and De Baerdemaeker, J. (1999), Gully-head morphology and implications for gully development on abandoned fields in a semi-arid environment, Sierra de Gata, southeast Spain. Earth Surf. Process. Landforms, 24: 585-603.
Zegeye, A. D., Langendoen, E. J., Steenhuis, T. S., Mekuria, W., & Tilahun, S. A. (2020). Bank stability and toe erosion model as a decision tool for gully bank stabilization in sub humid Ethiopian highlands. Ecohydrology & Hydrobiology, 20(2), 301–311.
Publicado
04/02/2023
##submission.howToCite##
RADEMANN, Lucas Krein; TRENTIN, Romario; ROBAINA, Luis Eduardo de Souza. CARACTERIZACIÓN Y ANÁLISIS DE LA EROSIÓN DE BARRANCO EN EL SUR DE BRASIL CON AYUDA DE VEHÍCULO AÉREO NO TRIPULADO. Mercator, Fortaleza, v. 21, feb. 2023. ISSN 1984-2201. Disponible en: <http://www.mercator.ufc.br/mercator/article/view/e21022en>. Fecha de acceso: 03 jan. 2026 doi: https://doi.org/10.4215/rm2022.e21022.
Sección
ARTICLES