EVALUACIÓN DEL IMPACTO DE LOS CAMBIOS EN EL USO Y COBERTURA DE LA TIERRA EN EL ESCURRIMIENTO SUPERFICIAL

Abstract

The aim of this study was to analyze the behavior of surface runoff as a result of changes in land use and land cover (LULC), using the Rio Novo basin (Brazil) as the analysis site. To estimate surface runoff, the curve number (NRCS-CN) method was used; as input data, the LULC classifications provided by the MapBiomas project and the pedological map of the state of São Paulo (1:250,000) were used. The Rio Novo basin was discretized into ten sub-basins. The results showed major changes in LULC between 1992 and 2022, with a reduction in pasture areas and an increase in annual crops and sugarcane fields, as well as in urban areas. Such alterations are conditioning factors of changes in Curve Number (CN) values, which imply changes in surface runoff values. For a rainfall of 130 mm (roughly 10-year return period), the surface runoff depth values ranged from 3.21 mm (areas with forest cover on soils in hydrological group A) to 101.35 mm (for urban areas on soils in hydrological group C). The urbanization process that occurred in sub-basins 1, 6, and 9 led to an increase in areas with the highest CN values (CN equal to 85 and 90). Locations with increased surface runoff values should be considered as critical areas, where soil and water losses may occur, thereby compromising water security in the basin. Keywords: NRSC-CN method, Geographic Information System, Water Resources Management, MapBiomas. 

Keywords: NRSC-CN method, Geographic Information System, Water Resources Management, MapBiomas


 


 


 

Author Biographies

Donizeti Aparecido Pastori Nicolete, São Paulo State University, Botucatu (SP), Brazil.

PhD in Agronomy (Irrigation and Drainage) from the São Paulo State University Júlio de Mesquita Filho (2015 and 2019). He has experience in the area of ​​Forest Resources and Forest Engineering, with an emphasis on Geoprocessing.

Edson Luís Piroli, São Paulo State University, Botucatu (SP), Brazil.

PhD in Agronomy in the Area of ​​Concentration in Energy in Agriculture, in the Research Line Land Use Planning, Environmental Studies and Sustainable Development, from UNESP. Full Professor in Remote Sensing and Geoprocessing from UNESP. Associate Professor at the Universidade Estadual Paulista Júlio de Mesquita Filho, in the undergraduate course in Geography, at the Ourinhos Campus and in the Postgraduate Program in Geography of the Faculty of Science and Technology of UNESP in Presidente Prudente. Productivity Scholarship/CNPq. He was a member of REDISIG (Red Iberoamericana de Sistemas de Información Geográfica), which brings together researchers from Argentina, Brazil, Chile, Costa Rica, Ecuador, Spain, Mexico and Puerto Rico. He has published dozens of articles in specialized journals and several scientific papers in event proceedings. He has several items of technical production. He participates in/or participates in events in Brazil and abroad. He has supervised over 200 undergraduate, postgraduate, specialization, master's and doctoral projects in the areas of remote sensing, geoprocessing, watershed management, forest resources, tourism and environmental management. He supervises PIBIC students in high school, undergraduate, specialization, master's, doctoral and post-doctoral programs. He has received 11 awards and/or honors. He has participated in over 200 final year project committees at different academic levels. He has published books and book chapters. He has participated in dozens of judging committees. He works in the areas of integrated management, planning and environmental management, watersheds and micro-basins and permanent preservation areas (APP), with an emphasis on the application of Remote Sensing as a data source and Geoprocessing as an analysis technique. He was coordinator of the Tourism course - Emphasis on Environment and Executive Vice Coordinator of the Experimental Campus of UNESP in Rosana between July 2007 and December 2008. He was Executive Vice Coordinator of the Experimental Campus of UNESP in Ourinhos with a term between March 2013 and March 2017. He was Executive Coordinator of this UNESP Campus from March 2013 to March 2021. In 2015 he was the Associate President of the UNESP Vice-Directors Forum and in 2016, president of this Forum. In his professional activities he interacted with more than three hundred collaborators in co-authorship of scientific papers and related activities. He participated in a thematic project and a public policy project funded by FAPESP. He coordinated the Regular Project "Analysis of land use in permanent preservation areas of the Pardo River using geoprocessing, and assessment of the impacts of this use on the natural resources of these areas", also funded by FAPESP, in addition to supervising several Scientific Initiation projects with scholarships granted by FAPESP and CNPq. He coordinated the MES/Cuba project funded by CAPES that involved four Cuban and Brazilian researchers and four sandwich doctorates of students from both countries. He coordinated the project Changes in land use in hydrographic microbasins and impacts on natural resources and the human population, funded by FAPESP. He is the leader of the Water Security Research Group and a member of the Brazilian Center for UAVs for Aerial Surveys - NUBRAVA. He is the Coordinator of the Thematic Network for Extension in Waters (ReTEA) and Coordinator of the Working Group of Higher Education Institutions of CBH/Paranapanema. 

References

AHMADI-SANI, N.; RAZAGHNIA, L.; PUKKALA, T. Effect of Land-Use Change on Runoff in Hyrcania. Land, v. 11, n. 2, p. 220, 2022.
DOI: http://dx.doi.org/10.3390/land11020220.
AKINNAWO, S. O. Eutrophication: causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, v. 12, p. 100733, 2023. DOI: http://dx.doi.org/10.1016/j.envc.2023.100733.
ALMEIDA, W. S.; PANACHUKI, E.; OLIVEIRA, P. T. S.; MENEZES, R. S.; ALVES SOBRINHO, T.; CARVALHO, D. F. Effect of soil tillage and vegetal cover on soil water infiltration. Soil And Tillage Research, v. 175, p. 130-138, 2018. DOI: http://dx.doi.org/10.1016/j.still.2017.07.009.
ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013. DOI: http://dx.doi.org/10.1127/0941-2948/2013/0507.
AMORIM, A.T.; PIROLI, E.L. Mudanças na paisagem do alto curso da bacia hidrográfica do Rio Novo, São Paulo, Brasil e impactos sobre os recursos hídricos. Ciência Geográfica v. XXVII, n. 2, p. 773-787, 2023. DOI: https://doi.org/10.57243/26755122.XXVII2023.
ANA/GESUB (2013) Áreas Aflorantes dos Aquíferos e Sistemas Aquíferos do Brasil. Escala: 1:1.000.000. Available at: https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/metadata/3ec60e4f-85ea-4ba7-a90c-734b57594f90. Accessed: 02 October 2023
Beven, K. J. Rainfall-runoff modelling: the primer. New York : Wiley. 2012.
CUI, J.; ZHU, M.; LIANG, Y.; QIN, G.; LI, J.; LIU, Y. Land Use/Land Cover Change and Their Driving Factors in the Yellow River Basin of Shandong Province Based on Google Earth Engine from 2000 to 2020. Isprs International Journal Of Geo-Information, v. 11, n. 3, p. 163, 2022. DOI: http://dx.doi.org/10.3390/ijgi11030163.
DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA - DAEE. Banco de Dados Hidrológicos. Available at: http://www.hidrologia.daee.sp.gov.br/
DELGADO, M. I.; CAROL, E.; CASCO, M. A. Land-use changes in the periurban interface: hydrologic consequences on a flatland-watershed scale. Science of the Total Environment, v. 722, p. 137836, 2020. DOI: http://dx.doi.org/10.1016/j.scitotenv.2020.137836.
DU, X.; JIAN, J.; DU, C.; STEWART, R. D. Conservation management decreases surface runoff and soil erosion. International Soil And Water Conservation Research, v. 10, n. 2, p. 188-196, 2022. DOI: http://dx.doi.org/10.1016/j.iswcr.2021.08.001.
DUAN, X.; CHEN, Y.; WANG, L.; ZHENG, G.; LIANG, T. The impact of land use and land cover changes on the landscape pattern and ecosystem service value in Sanjiangyuan region of the Qinghai-Tibet Plateau. Journal Of Environmental Management, v. 325, p. 116539, jan. 2023. DOI: http://dx.doi.org/10.1016/j.jenvman.2022.116539.
EUROPEAN SPACE AGENCY, Sinergise. Copernicus Global Digital Elevation Model. Distributed by OpenTopography, 2021. DOI: https://doi.org/10.5069/G9028PQB.
FAOUZI, E.; ARIOUA, A.; HSSAISOUNE, M.; BOUDHAR, A.; ELALOUI, A.; KARAOUI, I. Sensitivity analysis of CN using SCS-CN approach, rain gauges and TRMM satellite data assessment into HEC-HMS hydrological model in the upper basin of Oum Er Rbia, Morocco. Modeling Earth Systems And Environment, v. 8, n. 4, p. 4707-4729, 2022. DOI: http://dx.doi.org/10.1007/s40808-022-01404-8.
FOHRER, N.; HAVERKAMP, S.; ECKHARDT, K.; FREDE, H. G. Hydrologic Response to land use changes on the catchment scale. Physics And Chemistry Of The Earth, Part B: Hydrology, Oceans and Atmosphere, v. 26, n. 7-8, p. 577-582, 2001. DOI: http://dx.doi.org/10.1016/s1464-1909(01)00052-1.
GUPTA, L.; DIXIT, J. Estimation of rainfall-induced surface runoff for the Assam region, India, using the GIS-based NRCS-CN method. Journal Of Maps, v. 18, n. 2, p. 428-440, 2022. DOI: http://dx.doi.org/10.1080/17445647.2022.2076624.
HAGRAS, A. Runoff modeling using SCS-CN and GIS approach in the Tayiba Valley Basin, Abu Zenima area, South-west Sinai, Egypt. Modeling Earth Systems And Environment, v. 9, n. 4, p. 3883-3895, 2023. DOI: http://dx.doi.org/10.1007/s40808-023-01714-5.
HAILU, A.; MAMMO, S.; KIDANE, M. Dynamics of land use, land cover change trend and its drivers in Jimma Geneti District, Western Ethiopia. Land Use Policy, v. 99, p. 105011, 2020. DOI: http://dx.doi.org/10.1016/j.landusepol.2020.105011.
HONG, Y.; ADLER, R. F. Estimation of global SCS curve numbers using satellite remote sensing and geospatial data. International Journal Of Remote Sensing, v. 29, n. 2, p. 471-477, 2008. DOI: http://dx.doi.org/10.1080/01431160701264292.
Hawkins, R. H.; Hjelmfelt Jr, A. T.; Zevenbergen; A. W. Runoff probability, storm depth, and curve numbers. Journal of Irrigation and Drainage Division, v. 111, n. 4, p. 330-340, 1985.
Jenson, S.K.; Domingue, J.O. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering & Remote Sensing, v. 54, n. 11, p. 1593–1600, 1988.
JIA, M.; HE, D.; HUO, X.; ZHANG, H.; JIA, S.; ZHANG, J. Exploring the impact of climate change on flood risk at cultural heritage sites using a GIS-based SCS-CN method: a case study of shanxi province, china. International Journal Of Disaster Risk Reduction, v. 96, p. 103968, 2023. DOI: http://dx.doi.org/10.1016/j.ijdrr.2023.103968.
KUMAR, D. S.; ARYA, D. S.; VOJINOVIC, Z. Modeling of urban growth dynamics and its impact on surface runoff characteristics. Computers, Environment And Urban Systems, v. 41, p. 124-135, 2013.
LAL, M.; MISHRA, S. K.; PANDEY, A.; PANDEY, R. P.; MEENA, P. K.; CHAUDHARY, A.; JHA, R. K.; SHREEVASTAVA, A. K.; KUMAR, Y. Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots. Hydrogeology Journal, v. 25, n. 1, p. 151-167, 2016. DOI:. http://dx.doi.org/10.1007/s10040-016-1460-5.
LANDIM, P. M. B. (Coord.). Mapa geológico do Estado de São Paulo. Escala 1:250.000. 1984.
MAPBIOMAS. MapBiomas Project- Collection 8 of the Annual Series of Land Use and Land Cover Maps of Brazil. 2023.
MELESSE, A. M.; SHIH, S.F. Spatially distributed storm runoff depth estimation using Landsat images and GIS. Computers And Electronics In Agriculture, v. 37, n. 1-3, p. 173-183, 2002. DOI: http://dx.doi.org/10.1016/s0168-1699(02)00111-4.
MISHRA, B.; KUMAR, P.; SARASWAT, C.; CHAKRABORTY, S.; GAUTAM, A. Water Security in a Changing Environment: concept, challenges and solutions. Water, v. 13, n. 4, p. 490, 2021. DOI: http://dx.doi.org/10.3390/w13040490.
NOSETTO, M. D.; JOBBÁGY, E. G.; BRIZUELA, A. B.; JACKSON, R. B. The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems & Environment, v. 154, p. 2-11, 2012. DOI: http://dx.doi.org/10.1016/j.agee.2011.01.008.
OGURA, A. P.; SILVA, A. C.; CASTRO, G. B.; ESPÍNDOLA, E. L.G.; SILVA, A. L. An overview of the sugarcane expansion in the state of São Paulo (Brazil) over the last two decades and its environmental impacts. Sustainable Production And Consumption, v. 32, p. 66-75, 2022. DOI: http://dx.doi.org/10.1016/j.spc.2022.04.010.
PESSOA, T. N.; LIBARDI, P. L. Physical-hydric properties of Oxisols as influenced by soil structure and clay mineralogy. Catena, v. 211, p. 106009, abr. 2022. DOI: http://dx.doi.org/10.1016/j.catena.2021.106009.
Piroli, E. L. Geoprocessamento aplicado ao estudo do uso da terra das áreas de preservação permanente dos corpos d´água da bacia hidrográfica do Rio Pardo. 2013. 150f. Tese (Livre-Docência) - Universidade Estadual Paulista, Ourinhos, 2013.
PROKEŁOVÁ, R.; HORÁčKOVÁ, Š.; SNOPKOVÁ, Z. Surface runoff response to long-term land use changes: spatial rearrangement of runoff-generating areas reveals a shift in flash flood drivers. Science Of The Total Environment, v. 815, p. 151591, abr. 2022. DOI: http://dx.doi.org/10.1016/j.scitotenv.2021.151591.
Pruski, F. F.; Brandão, V.S.; SILVA, D. D. Escoamento superficial. 2. ed. Viçosa: UFV, 2010.
Rossi, M. Mapa pedológico do Estado de São Paulo: revisado e ampliado. 2017
SARASWAT, C.; KUMAR, P.; MISHRA, B. K. Assessment of stormwater runoff management practices and governance under climate change and urbanization: an analysis of bangkok, hanoi and tokyo. Environmental Science & Policy, v. 64, p. 101-117, 2016. DOI: http://dx.doi.org/10.1016/j.envsci.2016.06.018.
SATHEESHKUMAR, S.; VENKATESWARAN, S.; KANNAN, R. Rainfall–runoff estimation using SCS–CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub basin, South India. Modeling Earth Systems And Environment, v. 3, n. 1, p. 1-8, 2017. DOI: http://dx.doi.org/10.1007/s40808-017-0301-4.
SHIRAZI, S. M.; ADHAM, M. I.; OTHMAN, F.; ZARDARI, N. H.; ISMAIL, Z. Runoff trend and potentiality in Melaka Tengah Catchment of Malaysia using SCS-CN and statistical technique. Journal Of Environmental Engineering And Landscape Management, v. 24, n. 4, p. 245-257, 2016.
SANTANA, M. L. T.; SANTOS, F. F.; CARVALHO, K. M.; PEIXOTO, D. S.; UEZU, A.; AVANZI, J. C.; SERAFIM, M. E.; NUNES, M. R.; VAN ES, H. M.; CURI, N. Interactions between land use and soil type drive soil functions, highlighting water recharge potential, in the Cantareira System, Southeast of Brazil. Science Of The Total Environment, v. 903, p. 166125, dez. 2023. DOI: http://dx.doi.org/10.1016/j.scitotenv.2023.166125.
SARTORI, A.; GENOVEZ, A.; LOMBARDI NETO, F. Classificação Hidrológica de Solos Brasileiros para a Estimativa da Chuva Excedente com o Método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: classificação. Revista Brasileira de Recursos Hídricos, v. 10, n. 4, p. 5-18, 2005.
SONG, S.; WANG, W. Impacts of Antecedent Soil moisture on the Rainfall–Runoff Transformation Process Based on High-Resolution Observations in Soil Tank Experiments. Water, v. 11, n. 2, p. 296, 9 fev. 2019. DOI: http://dx.doi.org/10.3390/w11020296.
SOUZA, C. M.; SHIMBO, J. Z.; ROSA, M. R.; PARENTE, L. L.; ALENCAR, A. A.; RUDORFF, B. F. T.; HASENACK, H.; MATSUMOTO, M.; FERREIRA, L. G.; SOUZA-FILHO, P. W. M. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing, v. 12, n. 17, p. 2735, 2020. DOI: http://dx.doi.org/10.3390/rs12172735.
TECK, V.; POORTINGA, A.; RIANO, C.; DAHAL, K.; LEGASPI, R. M. B.; ANN, V.; CHEA, R. Land use and land cover change implications on agriculture and natural resource management of Koah Nheaek, Mondulkiri province, Cambodia. Remote Sensing Applications: Society and Environment, v. 29, p. 100895, 2023. DOI: http://dx.doi.org/10.1016/j.rsase.2022.100895.
USDA. Chapter 9 - Hydrologic Soil-Cover Complexes. In: USDA Part 630 National Engineering Handbook. Washington: Government Printing Office, 2004a.
USDA. Chapter 10 - Estimation of Direct Runoff from Storm Rainfall. In: USDA Part 630 National Engineering Handbook. Washington: Government Printing Office, 2004b.
USDA. Chapter 7 - Hydrologic Soil Groups. In: USDA Part 630 National Engineering Handbook. Washington: Government Printing Office, 2009.
UWIZEYIMANA, D.; MUREITHI, S. M.; MVUYEKURE, S. M.; KARUKU, G.; KIRONCHI, G. Modelling surface runoff using the soil conservation service-curve number method in a drought prone agro-ecological zone in Rwanda. International Soil And Water Conservation Research, v. 7, n. 1, p. 9-17, 2019. DOI: http://dx.doi.org/10.1016/j.iswcr.2018.12.001.
VALLE JUNIOR, L. C. G.; RODRIGUES, D. B. B.; OLIVEIRA, P. T. S. Initial abstraction ratio and Curve Number estimation using rainfall and runoff data from a tropical watershed. RBRH, v. 24, p. 327-345, 2019. DOI: http://dx.doi.org/10.1590/2318-0331.241920170199.
WANG, W.; WU, X.; YIN, C.; XIE, X. Nutrition loss through surface runoff from slope lands and its implications for agricultural management. Agricultural Water Management, v. 212, p. 226-231, 2019. DOI: http://dx.doi.org/10.1016/j.agwat.2018.09.007.
WEI, L.; ZHANG, B.; WANG, M. Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems. Agricultural Water Management, v. 94, n. 1-3, p. 54-62, 2007. DOI: http://dx.doi.org/10.1016/j.agwat.2007.08.007.
Published
07/08/2024
How to Cite
NICOLETE, Donizeti Aparecido Pastori; PIROLI, Edson Luís. EVALUACIÓN DEL IMPACTO DE LOS CAMBIOS EN EL USO Y COBERTURA DE LA TIERRA EN EL ESCURRIMIENTO SUPERFICIAL. Mercator, Fortaleza, v. 23, aug. 2024. ISSN 1984-2201. Available at: <http://www.mercator.ufc.br/mercator/article/view/e23012>. Date accessed: 25 mar. 2025. doi: https://doi.org/10.4215/rm2024.e23012.
Section
ARTICLES