RECOGNITION OF DURICRUST GEOMORPHIC SURFACES USING A RELIEF DISSECTION MATRIX
Abstract
Landforms can orientate the hydrodynamics and distribution of materials on the ground, producing flattened and/or lowered geomorphic surfaces given the evolutionary characteristics from climatic, morphogenetic and pedogenetic factors. This work aims to demonstrate the compartmentalization and association of geomorphic surfaces covered by ferruginous duricrusts in Savannah areas in Brazil according to a relief dissection matrix. This matrix indicates the vertical cutting of the valleys and the interfluvial horizontal dimension of the hills through landform measurements in radar images, classification in alphanumeric codes and statistical correlations. The results indicated details in the compartmentalization of the surface according to the landform roughness, making it possible to link, through data from the dissection matrix and the statistical correlation, the association between the compartments according to summit positions and remaining depressed areas. Despite the fact that more robust measurements obtained from high-precision mappings can point out further landform evolutionary stages, it is understood that a dissection matrix and its statistical correlations can not only compartmentalize the landscape and provide an initial overview of the landscape’s evolution, but also indicate geomorphic surfaces that could have been worked at the same time. In this sense, the recognition of geomorphic surfaces, occurrence of duricrusts and landforms in this work allowed a certain morphogenetic correspondence that can contribute to geomorphological studies, although the results must be observed with caution when verified from the tropical perspective of relief evolution.
Keywords: Valley Cutting; Interfluvial Dimension; Dissection Matrix; Geomorphic Surfaces; Duricrusts
References
BARTORELLI, A.; ASSINE, M. L.; PIRES NETO, A. G.; AB’SÁBER, A. N. Dunas do Jalapão: uma paisagem insólita no interior do Brasil. In: MODENESI-GAUTTIERI, M. C.; BARTORELLI, A.; MANTESSO-NETO, V.; CARNEIRO, C. D. R.; LISBOA, M. B. A. L. (Orgs.). A Obra de Aziz Nacib Ab'Sáber. São Paulo: Beca, 2010. p. 588.
BIGARELLA, J. J.; PASSOS, E.; HERMANN, M. L. P.; SANTOS, G. F.; MENDONÇA, M.; SALAMUNI, E., et al. Estrutura e Origens das Paisagens Tropicais e Subtropicais. Florianópolis: UFSC, 2003.
BRASIL – MME – DNPM. Projeto Radambrasil. Folha SC.22 Tocantins. Série Levantamento dos Recursos Naturais 22. Rio de Janeiro: DNPM, 1981. p. 520.
BÜDEL, J. Climatic Geomorphology. New Jersey: Princeton University Press, 1982.
CAMPOS, M. C. C.; MARQUES JÚNIOR, J.; DE SOUZA, Z. M.; SIQUEIRA, D. S.; PEREIRA, G. T. Discrimination of geomorphic surfaces with multivariate analysis of soil attributes in sandstone-basalt lithosequence. Revista Ciência Agronômica, v. 43, n. 3, p. 429–438, 2012. DOI: https://doi.org/10.1590/S1806-66902012000300003.
COLTRINARI, L. Paleosurfaces in southeastern Brazil: São José dos Campos plateau landform evolution. Geociências, v. 30, n. 1, p. 113–120, 2011.
COOKE, E. U.; DOORNKAMP, J. C. Geomorphology in Environmental Management. Clarendon Press, 1990. p. 410.
DANTAS, M. E.; SHINZATO, E.; CARVALHO FILHO, A.; LUMBRERAS, J. F.; TEIXEIRA, W. G.; ROCHA, M. G.; MACHADO, M. F. Origem das Paisagens do Estado do Tocantins. In: ROCHA, M. G. (Org.). Geodiversidade do Estado do Tocantins. 1. ed. Goiânia: CPRM - Serviço Geológico do Brasil, 2019. p. 47-84.
DANTAS, M. E.; JACQUES, P. D.; NUMMER, A. R. Síntese geológica dos Estados de Goiás e Tocantins: roteiro compreendido entre as cidades de Goiânia e Palmas. Guia de Campo da XIV Reunião Brasileira de Classificação e Correlação de Solos, p. 15-39, 2022.
DEMEK, J. Generalization of Geomorphological Maps. Progress Made in Geomorphological Mapping, Brno, p. 36-72, 1967.
DEMEK, J.; EMBLETON, C.; GELLERT, J.; VERSTAPPEN, H. (Eds.). Manual of Detailed Geomorphological Mapping. Praha: Czech Academy of Sciences, 1972. p. 1-344.
EVANGELISTA, B. A.; SIMON, J.; DIAS, T. S. S.; PAZ, L. R. S.; LIMEIRA, A. S.; ALMEIDA, R. E. M. Clima dos Estados de Goiás e Tocantins. Guia de Campo da XIV Reunião Brasileira de Classificação e Correlação de Solos, p. 89-115, 2022.
GOUDIE, A. S. (Ed.). Encyclopedia of Geomorphology. London: Routledge, 2006. p. 1156.
GUILLOCHEAU, F.; SIMON, B.; BABY, G.; BESSIN, P.; ROBIN, C.; DAUTEUIL, O. Planation surfaces as a record of mantle dynamics: The case example of Africa. Gondwana Research, v. 53, p. 82-98, 2018. DOI: https://doi.org/10.1016/j.gr.2017.05.015.
HU, W.; BISWAS, A.; SI, B. C. Application of multivariate empirical mode decomposition for revealing scale-and season-specific time stability of soil water storage. Catena, v. 113, p. 377–385, 2014. DOI: https://doi.org/10.1016/j.catena.2013.08.024.
IMAIZUMI, F.; HATTANJI, T.; HAYAKAWA, Y. S. Channel initiation by surface and subsurface flows in a steep catchment of the Akaishi Mountains, Japan. Geomorphology, v. 115, n. 1-2, p. 32-42, 2010. DOI: https://doi.org/10.1016/j.geomorph.2009.09.026.
KING, L. C. A Geomorfologia do Brasil Oriental. Revista Brasileira de Geografia, São Paulo, v. 18, n. 2, p. 147-265, 1956.
KING, L. C. The Morphology of the Earth: A Study and Synthesis of World Scenery. Edinburgh: Oliver & Boyd Ltd, 1967. p. 726.
LEOPOLD, L. B.; LANGBEIN, W. B. Association and determinacy in geomorphology. In: C. C. A. Jr. (Ed.). The Fabric of Geology. Addison-Wesley Publishing Company, Inc., 1963. p. 184-192. Disponível em: http://pubs.er.usgs.gov/publication/70185692.
MESCERJAKOV, J. P. Les Concepts de Morphostruture et de Morphosculture: un nouvel instrument de l’analyse geomorphologique. Annales de Geographie, v. 77, n. 423, p. 539-552, 1968.
MINÁR, J.; EVANS, I. S. Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorphological mapping. Geomorphology, v. 95, n. 3-4, p. 236-259, 2008. DOI: https://doi.org/10.1016/j.geomorph.2007.06.003.
MITUSOV, A. V.; DREIBRODT, S.; MITUSOVA, O. E.; KHAMNUEVA, S. V.; BORK, H. R. Detection of land surface memory by correlations between thickness of colluvial deposits and morphometric variables. Geomorphology, v. 191, p. 109–117, 2013. DOI: https://doi.org/10.1016/j.geomorph.2013.03.006.
PELTIER, L. The geographic cycle in periglacial regions as it is related to climatic geomorphology. Annals of the Association of American Geographers, v. 40, p. 214–236, 1950.
PHILLIPS, J. D.; PAWLIK, Ł.; ŠAMONIL, P. Weathering fronts. Earth-Science Reviews, v. 198, p. 102925, 2019. DOI: https://doi.org/10.1016/j.earscirev.2019.102925.
RIBEIRO, P. S. E.; ALVES, C. L. Geologia e Recursos Minerais da Região de Palmas: Folha Miracema do Norte (SC.22-X-D), Porto Nacional (SC.22-Z-B) e Santa Teresinha (SC.22-Z-a). Escala 1:250.000. Goiânia: CPRM, 2017. p. 483.
ROSS, J. L. S. Geomorfologia, Ambiente e Planejamento. São Paulo: Contexto, 1991.
ROSS, J. L. S. O Registro Cartográfico dos Fatos Geomórficos e a Questão da Taxonomia do Relevo. Revista do Departamento de Geografia, v. 6, p. 17–28, 1992.
ROSS, J. L. S. Análise Empírica da Fragilidade dos Ambientes Naturais e Antropizados. Revista do Departamento de Geografia, v. 8, p. 63–74, 1994.
ROSS, J. L. S.; MOROZ, I. C. Mapa Geomorfológico do Estado de São Paulo. São Paulo: DG-FFLCH-USP/IPT/Fapesp, 1997.
ROSS, J. L. S. O relevo brasileiro no contexto da América do Sul. Revista Brasileira de Geografia, v. 61, n. 1, 2016. DOI: https://doi.org/10.21579/issn.2526-0375_2016_n1_art_2.
ROSS, J. L. S.; FIERZ, M. de S. M.; NEPOMUCENO, P. L. M.; DE MELO, M. A. Macroformas do Relevo da América do Sul. Geography Department University of Sao Paulo, v. 38, p. 58–69, 2019. DOI: https://doi.org/10.11606/rdg.v38i1.158561.
RUHE, R. V. Geomorphic surfaces and the nature of soils. Soil Science, v. 82, p. 441–445, 1956.
SILVA, B. A.; CALEGARI, M. R. Polygenetic geomorphic surfaces in the context of the landscapes of western Paraná. Revista Brasileira de Geomorfologia, v. 23, n. 3, p. 1634–1655, 2022. DOI: https://doi.org/10.20502/rbg.v23i3.2108.
SMITH, M. J.; PARON, P.; GRIFFITHS, J. S. Geomorphological Mapping: Methods and Applications. Elsevier, 2011.
SPEARMAN, C. Demonstration of Formulæ for True Measurement of Correlation. The American Journal of Psychology, v. 18, n. 2, p. 161–169, 1907. DOI: https://doi.org/10.2307/1412408.
SU, Q.; WANG, X.; YUAN, D.; XIE, H.; LI, H.; HUANG, X. Fluvial entrenchment of the Gonghe Basin and integration of the upper Yellow River - Evidence from the cosmogenically dated geomorphic surfaces. Geomorphology, v. 429, 2023. DOI: https://doi.org/10.1016/j.geomorph.2023.108654.
TOY, T. J.; CHUSE, W. R. Topographic reconstruction: A geomorphic approach. Ecological Engineering, v. 24, n. 1-2, p. 29–35, 2005.
TRICART, J. Observation des Phenómenes et des Faits Geomorphologiques. In: TRICART, J. La Cartographie Geomorphologique Detaillée – Principes et Méthodes de la Geomorphologie. Paris: Masson e Cie Editeurs, 1965. p. 183–233.
TRICART, J. Ecodinâmica. Rio de Janeiro: FIBGE/SUPREN, 1977.
TROEH, F. R. Landform equations fitted to contour maps. American Journal of Sciences, v. 263, p. 616-627, 1965.
VILLELA, F. N. J.; SANCHES ROSS, J. L.; MANFREDINI, S. Relief-Rock-Soil relationship in the transition of Atlantic Plateau to Peripheral Depression, Sao Paulo, Brazil. Journal of Maps, v. 9, n. 3, p. 343–352, 2013. DOI: https://doi.org/10.1080/17445647.2013.805170.
VILLELA, F. N. J.; ROSS, J. L. S.; MANFREDINI, S. Análise geomorfopedológica na borda leste da Bacia Sedimentar do Paraná, Sudeste do Brasil. Revista Brasileira de Geomorfologia, v. 16, p. 669-682, 2015.
WAMBEKE, A. V. Soils of the Tropics: Properties and Appraisal. New York: McGraw-Hill, 1992.
WILSHIRE, H. G.; RENEAU, S. L. Geomorphic surfaces and underlying deposits of the Mohave Mountains Piedmont, Lower Colorado River, Arizona. Zeitschrift Für Geomorphologie, v. 36, n. 2, p. 207–226, 1992. DOI: https://doi.org/10.1127/zfg/36/1992/207.
ZHANG, L.; WANG, L. Optimization of site investigation program for reliability assessment of undrained slope using Spearman rank correlation coefficient. Computers and Geotechnics, v. 155, 2023. DOI: https://doi.org/10.1016/j.compgeo.2022.105208.
ZHU, B.; YU, J.; RIOUAL, P.; GAO, Y.; ZHANG, Y.; MIN, L. Geomorphoclimatic characteristics and landform information in the Ejina Basin, Northwest China. Environmental Earth Sciences, v. 73, n. 11, p. 7547–7560, 2015. DOI: https://doi.org/10.1007/s12665-014-3927-9.
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant MERCATOR the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License, which allows the sharing of the work with recognition of the authorship of the work and initial publication in this journal.
- Authors are authorized to sign additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (e.g., publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase the impact and citation of the published work (see The Effect of Free Access).
- Authors are responsible for the content of the manuscript published in the journal.