Energy Transition and Mining in the Global South

Abstract

The worsening environmental, social and economic problems associated with the use of fossil fuels intensifies the urgency of transitioning to renewable energy sources, driving the adoption of technologies such as solar panels, wind turbines and electric vehicles. Although often promoted as sustainable solutions, these technologies have intrinsic characteristics – such as lower energy density, reduced useful life and limitations in recycling processes – that increase dependence on minerals, many of which are classified as “critical.” This article seeks to contribute to the debate by analyzing the impacts of the significant increase in demand for these resources. Based on the International Renewable Energy Agency’s definition of critical minerals – which includes cobalt, nickel, copper, lithium and rare earth metals – we carried out extensive data collection, systematization and analysis on a global scale, identifying the main producing countries and the socio-environmental contexts associated with their extraction. The results show the reproduction of a historical pattern: most of these minerals are extracted in countries of the Global South, especially in Africa, Asia and Latin America, where environmental, social and economic regulations tend to be more flexible, favoring large transnational corporations. It was also found that the extraction of these minerals is often associated with serious socio-environmental impacts, such as intense pollution, exposure of workers to toxic metals and the financing of militias linked to authoritarian regimes. These issues, which are still little debated in the dominant discourse on the subject, require greater attention from the scientific community and society in order to promote a truly fair energy transition on a global scale.

Keywords: Critical Minerals; Extraction; Impacts; Problematics.

Author Biographies

João Henrique Santana Stacciarini, Federal University of Goiás, Goiânia (GO), Brazil

Professor e Doutor em Geografia. Bolsista de Pós-Doutorado no Programa de Pós-Graduação em Geografia (PPGEO) da Universidade Estadual de Goiás (UEG).

Ricardo Junior de Assis Fernandes Gonçalves, State University of Goiás, Goiânia, (GO), Brazil

Research Productivity Fellow from CNPq - Level 2. Current Coordinator of PPGEO-UEG, Cora Coralina Campus. Professor in the Undergraduate and Stricto Sensu Graduate courses in Geography (PPGEO) at the State University of Goiás (UEG).

References

AHMAD, S. The Lithium Triangle: where Chile, Argentina, and Bolivia meet. Harvard International Review. [S.L.], p. 1. 15 jan. 2020. Disponível em: https://www.jstor.org/stable/26917284. Acesso em: 12 ago. 2024.

ALONSO, A. El multicolor de la energía: desafíos y oportunidades para la transición energética. Cidade do México: Universidad Autónoma Metropolitana, 2024. 220 p. Disponível em: https://rosalux.org.mx/libro-multicolor-de-la-energia/. Acesso em: 24 set. 2024.

AMINDONI, A. As EVs surge, so does nickel mining’s death toll: in the mineral-rich fringes of indonesia, whose nickel will feed EV giants like tesla, the deaths of miners continue to mount. Rest of World. [S.L.], p. 1. jul. 2023. Disponível em: https://restofworld.org/2023/indonesia-nickel-mining-deaths/. Acesso em: 28 jun. 2024.

AMNESTY INTERNATIONAL. DRC: powering change or business as usual?. London (UK): Amnesty International, 2023. 100 p. Disponível em: https://www.amnesty.org/en/documents/AFR62/7009/2023/en/. Acesso em: 23 ago. 2024.

AMNISTÍA INTERNACIONAL. Estado de Salud Fallido: emergencia de salud en pueblos indígenas de espinar, perú. London (UK): Amnistía Internacional, 2021. 48 p. Disponível em: https://www.amnesty.org/es/documents/amr46/3829/2021/es/. Acesso em: 23 ago. 2024.

ASUNCION, A. M. et al. Challenging the binary of home vs. host state governance: Canadian transnational mining behavior and local communities in the Philippines extractive industry. The Extractive Industries and Society, [S.L.], v. 12, p. 101166, dez. 2022. http://dx.doi.org/10.1016/j.exis.2022.101166.

BALARAM, V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, [S.L.], v. 10, n. 4, p. 1285-1303, jul. 2019. http://dx.doi.org/10.1016/j.gsf.2018.12.005.

BALCAZAR, S. Poisoned lives: five decades of pollution in Chile’s quintero-ventanas bay. Mongabay. [S.L], p. 1. out. 2016. Disponível em: https://news.mongabay.com/2016/10/poisoned-lives-five-decades-of-pollution-in-chiles-quintero-ventanas-bay/. Acesso em: 19 ago. 2024.

BLIGHT, G. Mine Waste: a brief overview of origins, quantities, and methods of storage. In: LETCHER, T. M.; VALLERO, D. A.. Waste: a handbook for management. Cambridge (U.S): Academic Press, 2011. Cap. 5. p. 77-88. https://doi.org/10.1016/B978-0-12-381475-3.10005-1.

BUARQUE, D. O Sul Global está em ascensão: mas o que é exatamente o sul global?. Interesse Nacional. [S.L.], p. 1. jul. 2023. Disponível em: https://interessenacional.com.br/portal/o-sul-global-esta-em-ascensao-mas-o-que-e-exatamente-o-sul-global/. Acesso em: 01 jul. 2024.

CAIXIN GLOBAL. China's rare earth mining could cause irreversible environmental harm. ThinkChina. [S.L.], p. 1. mai. 2022. Disponível em: https://www.thinkchina.sg/society/chinas-rare-earth-mining-could-cause-irreversible-environmental-harm. Acesso em: 16 set. 2024.

CB - Cobalt Institute. Cobalt Market Report 2022. England: Cobalt Institute, 2023. 45 p. Disponível em: https://www.cobaltinstitute.org/resource/cobalt-market-report-2022/. Acesso em: 31 mai. 2024.

CHEN, B. et al. Pathways for sustainable energy transition. Journal of Cleaner Production, [S.L.], v. 228, p. 1564-1571, ago. 2019. http://dx.doi.org/10.1016/j.jclepro.2019.04.372.

CLIMATE WATCH. Historical GHG Emissions. 2024. Disponível em: https://www.climatewatchdata.org/ghg-emissions?breakBy=countries&end_year=2022&gases=co2&source=PIK&start_year=1850. Acesso em: 06 jul. 2024.

COTA, I. How nations sitting on lithium reserves are handling the new ‘white gold’ rush. El País. [S.L.], p. 1. fev. 2022. Disponível em: https://english.elpais.com/economy-and-business/2022-02-14/how-nations-sitting-on-lithium-reserves-are-handling-the-new-white-gold-rush.html. Acesso em: 15 ago. 2024.

COUMANS, C. Minding the “governance gaps”: re-thinking conceptualizations of host state “weak governance”. The Extractive Industries and Society, [S.L.], v. 6, n. 3, p. 675-687, jul. 2019. http://dx.doi.org/10.1016/j.exis.2019.06.003.

CRI - Climate Rights International. Nickel Unearthed: the human and climate costs of Indonesia’s nickel industry. California (United States): Climate Rights International, 2024. 139 p. Disponível em: https://cri.org/reports/nickel-unearthed/. Acesso em: 25 jun. 2024.

CUSTODIO, Leslie Moreno. “¿Cómo vamos a vivir?” El impacto de la minería en las comunidades del sur de Perú. Dialogue Earth. [S.L], p. 1. Dez. 2022. Disponível em: https://dialogue.earth/es/polucion/361618-como-vamos-a-vivir-el-impacto-de-la-mineria-en-las-comunidades-del-sur-de-peru/. Acesso em: 23 ago. 2024.

DAVIS, G. A.; TILTON, J. E.. The resource curse. Natural Resources Forum, [S.L.], v. 29, n. 3, p. 233-242, ago. 2005. http://dx.doi.org/10.1111/j.1477-8947.2005.00133.x.

DECENA, K. Indonesia emerging as major cobalt supplier amid lingering ESG concerns. S&P Global. [S.L], p. 1. jul. 2023. Disponível em: https://www.spglobal.com/marketintelligence/en/news-insights/blog/essential-ir-insights-newsletter-fall-2023. Acesso em: 02 set. 2024.

ELECTRONICS WATCH. Human Rights and Environmental Impact of Nickel Mining at Rio Tuba. Amesterdã (Holanda): Electronics Watch, 2022. 11 p. Disponível em: https://eurmc.org/publication/human-rights-and-environmental-impact-of-nickel-mining-at-rio-tuba/. Acesso em: 02 set. 2024.

ENER DATA - An Independent Research Company that Specialises in the Analysis and Forecasting of Energy and Climate Issues. Total energy production. 2024. Disponível em: https://yearbook.enerdata.net/total-energy/world-energy-production.html. Acesso em: 19 fev. 2024.

EPA - U.S. Environmental Protection Agency. Metal Mining Waste Management Trend. 2024. TRI National Analysis. Disponível em: https://www.epa.gov/trinationalanalysis/metal-mining-waste-management-trend. Acesso em: 03 jul. 2024.

FRESLON, W. S.; COONEY, P. Transnational Mining and Accumulation by Dispossession. In: COONEY, P.; FRESLON, W. S. (ed.). Environmental Impacts of Transnational Corporations in the Global South:. Bingley (England): Emerald, 2018. p. 11-34. https://doi.org/10.1108/S0161-723020180000033002.

GAAG - Geoscience Australia (Australian Government). Rare Earth Elements. 2023. Disponível em: https://www.ga.gov.au/scientific-topics/minerals/mineral-resources-and-advice/australian-resource-reviews/rare-earth-elements. Acesso em: 04 set. 2024.

GASPAROTTO, J.; MARTINELLO, K. Coal as an energy source and its impacts on human health. Energy Geoscience, [S.L.], v. 2, n. 2, p. 113-120, abr. 2021. http://dx.doi.org/10.1016/j.engeos.2020.07.003.

GLOBAL WITNESS. Fuelling the future, poisoning the present: Myanmar’s rare earth boom. 2024. Disponível em: https://www.globalwitness.org/en/campaigns/natural-resource-governance/fuelling-the-future-poisoning-the-present-myanmars-rare-earth-boom/. Acesso em: 16 set. 2024.

GLOBAL WITNESS. Myanmar's poisoned mountains: the toxic rare earth mining industry at the heart of the global green energy transition. 2022. Disponível em: https://www.globalwitness.org/en/campaigns/natural-resource-governance/myanmars-poisoned-mountains/. Acesso em: 16 set. 2024.

GONÇALVES, Ricardo Junior de Assis Fernandes; MILANEZ, Bruno. Extrativismo Mineral, Conflitos e Resistências no Sul Global. Sapiência, Iporá, Brasil, v. 2, n. 8, p. 6-33, dez. 2019. Disponível em: https://www.revista.ueg.br/index.php/sapiencia/article/view/9810. Acesso em: 08 jul. 2024.

GORENA, T. et al. Cupressus macrocarpa leaves for biomonitoring the environmental impact of an industrial complex: the case of puchuncaví-ventanas in chile. Chemosphere, [S.L.], v. 260, p. 127521, dez. 2020. http://dx.doi.org/10.1016/j.chemosphere.2020.127521.

HARVEY, D. 17 contradições e o fim do capitalismo. São Paulo: Boitempo, 2016.

HILSON, G.; HASELIP, J. The environmental and socioeconomic performance of multinational mining companies in the developing world economy. Minerals & Energy, [S.L.], v. 19, n. 3, p. 25-47, set. 2004. http://dx.doi.org/10.1080/14041040410027318.

ICA - International Copper Association. Copper's Role in the Transition to a Low-Carbon Economy. 2024. Disponível em: https://internationalcopper.org/. Acesso em: 19 ago. 2024.

IEA - International Energy Agency. Energy Statistics Data Browser: total energy supply (tes) by source, world 1990-2022. Total energy supply (TES) by source, World 1990-2022. 2023. World Energy Balances. Disponível em: https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser. Acesso em: 20 jan. 2024.

IEA - International Energy Agency. Indonesia: Coal. 2024. Disponível em: https://www.iea.org/countries/indonesia/coal. Acesso em: 15 jun. 2024.

IEA - International Energy Agency. The Role of Critical Minerals in Clean Energy Transitions. Paris, France: IEA, 2021. 287 p. Disponível em: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions. Acesso em: 01 fev. 2024.

IRENA - International Renewable Energy Agency. Critical Materials for The Energy Transition. Abu Dhabi (Emirados Árabes Unidos): International Renewable Energy Agency (IRENA), 2021. 43 p. Disponível em: https://www.irena.org/Technical-Papers/Critical-Materials-For-The-Energy-Transition. Acesso em: 03 jan. 2024.

IRENA - International Renewable Energy Agency. Solar energy. 2024b. Disponível em: https://www.irena.org/Energy-Transition/Technology/Solar-energy. Acesso em: 31 jan. 2024.

IRENA - International Renewable Energy Agency. Wind energy. 2024a. Disponível em: https://www.irena.org/Energy-Transition/Technology/wind-energy. Acesso em: 01 fev. 2024.

IRENA - International Renewable Energy Agency; CPI - Climate Policy Initiative. Global landscape of renewable energy finance 2023. Abu Dhabi (Emirados Árabes Unidos): International Renewable Energy Agency (IRENA), 2023. 24 p. Disponível em: https://www.irena.org/Publications/2023/Feb/Global-landscape-of-renewable-energy-finance-2023. Acesso em: 31 jan. 2024.

JONG, H. N. Indonesia’s coal burning hits record high: and “green” nickel is largely why. Mongabay. [S.L.], p. 1. jul. 2023. Disponível em: https://news.mongabay.com/2023/07/indonesias-coal-burning-hits-record-high-and-green-nickel-is-largely-why/. Acesso em: 10 jul. 2024.

KANG, D. ‘The Sacrifice Zone': Myanmar bears cost of green energy. Associated Press (AP). [S.L.], p. 1. ago. 2022. Disponível em: https://apnews.com/article/technology-forests-myanmar-75df22e8d7431a6757ea4a426fbde94c. Acesso em: 17 set. 2024.

LEE, J. C. K.; WEN, Z. Rare Earths from Mines to Metals: comparing environmental impacts from China’s main production pathways. Journal of Industrial Ecology, [S.L.], v. 21, n. 5, p. 1277-1290, 22 set. 2016. http://dx.doi.org/10.1111/jiec.12491.

LIU, Wenjuan; AGUSDINATA, Datu B.. Interdependencies of lithium mining and communities sustainability in Salar de Atacama, Chile. Journal Of Cleaner Production, [S.L.], v. 260, p. 120838, jul. 2020. http://dx.doi.org/10.1016/j.jclepro.2020.120838.

LIU, W. et al. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere, [S.L.], v. 216, p. 75-83, fev. 2019. http://dx.doi.org/10.1016/j.chemosphere.2018.10.109.

LÓPEZ-CALVA, L. F. Lithium in Latin America: A new quest for “El Dorado”? United Nations Development Programme (UNDP): Latin America and the Caribbean. [S.L.], p. 1. mai. 2022. Disponível em: https://www.undp.org/latin-america/blog/graph-for-thought/lithium-latin-america-new-quest-el-dorado. Acesso em: 12 ago. 2024.

MACONACHIE, R. Appalling conditions and poverty wages: the lives of cobalt miners in the DRC. The Conversation. Melbourne (Australia), p. 1. 30 dez. 2024. Disponível em: https://theconversation.com/we-miners-die-a-lot-appalling-conditions-and-poverty-wages-the-lives-of-cobalt-miners-in-the-drc-220986. Acesso em: 01 jun. 2024.

MAZZIERI, A.; MONTANARI, A. Surviving the white gold rush - life in the ‘lithium triangle'. Al Jazeera. [S.L.], p. 1. mar. 2024. Disponível em: https://www.aljazeera.com/features/longform/2024/3/16/surviving-the-white-gold-rush-life-in-south-americas-lithium-triangle-2. Acesso em: 15 ago. 2024.

MILANEZ, B.; FELIPPE, M. F. (Org.). Minas esgotada: antecedentes e impactos do desastre da Vale na Bacia do Paraopeba. Juiz de Fora: Editora UFJF, 2021. 136 p.

MILESI, O. Smelter finally closes due to extreme pollution in chilean bay. Inter Press Service. [S.L], p. 1. 4 jul. 2022. Disponível em: https://www.ipsnews.net/2022/07/smelter-finally-closes-due-extreme-pollution-chilean-bay. Acesso em: 18 ago. 2024.

NAING, A. 30 people missing in mine landslide in Kachin State. Myanmar Now. [S.L.], p. 1. jun. 2024. Disponível em: https://myanmar-now.org/en/news/30-people-missing-in-mine-landslide-in-kachin-state/. Acesso em: 17 set. 2024.

PISTILLI, M. Top 9 Lithium-producing Countries: updated 2024. Nasdaq. [S.L.], p. 1. maio 2024. Disponível em: https://www.nasdaq.com/articles/top-9-lithium-producing-countries-updated-2024. Acesso em: 09 ago. 2024.

POEMAS - Grupo Política, Economia, Mineração, Ambiente e Sociedade. Antes fosse mais leve a carga: avaliação dos aspectos econômicos, políticos e sociais do desastre da Samarco/Vale/BHP em Mariana (MG). Relatório final. Juiz de Fora: PoEMAS, 2015. Disponível em: https://www.ufjf.br/poemas/files/2014/07/PoEMAS-2015-Antes-fosse-mais-leve-a-carga-versão-final.pdf. Acesso em: 15 out. 2024.

RAID - Rights and Accountability in Development; AFREWATCH - African Resources Watch. Beneath the Green: a critical look at the environmental and human costs of industrial cobalt mining in DRC. Online: RAID, 2024. 114 p. Disponível em: https://raid-uk.org/post-library/report-beneath-the-green/. Acesso em: 31 mai. 2024.

RIOFRANCOS, T. Shifting Mining from the Global South misses the point of climate justice: onshoring critical minerals mining doesn’t address the root causes of predatory extraction. Foreign Policy. Washington, U.S., p. 1. fev. 2022. Disponível em: https://foreignpolicy.com/2022/02/07/renewable-energy-transition-critical-minerals-mining-onshoring-lithium-evs-climate-justice/. Acesso em: 02 jul. 2024.

SANTOS, M. A Natureza do Espaço: Técnica e Tempo, Razão e Emoção. São Paulo: Hucitec, 1996.

SAWAL, R. Red seas and no fish: Nickel mining takes its toll on Indonesia’s spice islands. Mongabay. [S.L.], p. 1. fev. 2022. Disponível em: https://news.mongabay.com/2022/02/red-seas-and-no-fish-nickel-mining-takes-its-toll-on-indonesias-spice-islands/. Acesso em: 12 jul. 2024.

SILVEIRA, M. L. Los territorios corporativos de la globalización. Geograficando, 3(3), p. 13- 26, 2007. Disponível em: http://sedici.unlp.edu.ar/handle/10915/13941. Acesso em: 08 jul. 2024.

SOVACOOL, B. et al. Sustainable minerals and metals for a low-carbon future. Science, [S.L.], v. 367, n. 6473, p. 30-33, 3 jan. 2020. American Association for the Advancement of Science (AAAS). http://dx.doi.org/10.1126/science.aaz6003.

STANDAERT, M. China wrestles with the toxic aftermath of rare earth mining. Yale Environment 360. [S.L.], p. 1. jul. 2019. Disponível em: https://e360.yale.edu/features/china-wrestles-with-the-toxic-aftermath-of-rare-earth-mining. Acesso em: 16 set. 2024.

STATISTA. Average installed cost for solar photovoltaics worldwide from 2010 to 2022. 2023a. Disponível em: https://www.statista.com/statistics/809796/. Acesso em: 30 jan. 2024.

STATISTA. Distribution of cobalt demand worldwide in 2022, by application. 2024d. Disponível em: https://www.statista.com/statistics/1143399/global-cobalt-consumption-distribution-by-application/. Acesso em: 31 mai. 2024.

STATISTA. Distribution of mine production of copper worldwide in 2022, by country. 2024b. Disponível em: https://www.statista.com/statistics/605533/distribution-of-global-copper-mine-production-by-select-country/. Acesso em: 19 ago. 2024.

STATISTA. Distribution of mine production of nickel worldwide in 2022, by country. 2024a. Disponível em: https://www.statista.com/statistics/603621/global-distribution-of-nickel-mine-production-by-select-country/. Acesso em: 12 ago. 2024.

STATISTA. Distribution of rare earths production worldwide as of 2023, by country. 2024c. Disponível em: https://www.statista.com/statistics/270277/mining-of-rare-earths-by-country/. Acesso em: 15 ago. 2024.

STATISTA. Global lithium industry - statistics & facts. 2024i. Disponível em: https://www.statista.com/topics/3217/lithium/. Acesso em: 09 jul. 2024.

STATISTA. Global rare earths mine production volume 2010-2023. 2024k. Disponível em: https://www.statista.com/statistics/1187186/global-rare-earths-mine-production/. Acesso em: 15 ago. 2024.

STATISTA. Leading copper mining companies worldwide in 2023, by production output. 2024g. Disponível em: https://www.statista.com/statistics/281023/leading-copper-producers-worldwide-by-output/. Acesso em: 11 jul. 2024.

STATISTA. Lifespan of low-carbon energy sources and power plants worldwide by type. 2023b. Disponível em: https://www.statista.com/statistics/1264727/. Acesso em: 05 fev. 2024.

STATISTA. Lithium-ion batteries - statistics & facts. 2024j. Disponível em: https://www.statista.com/topics/3217/lithium/. Acesso em: 09 jul. 2024.

STATISTA. Major countries in worldwide nickel mine production in 2023. 2024e. Disponível em: https://www.statista.com/statistics/264642/nickel-mine-production-by-country/. Acesso em: 08 jul. 2024.

STATISTA. Mine production of copper in Democratic Republic of the Congo from 2010 to 2023. 2024h. Disponível em: https://www.statista.com/statistics/1276790/copper-production-in-democratic-republic-of-the-congo/. Acesso em: 23 ago. 2024.

STATISTA. Mine production of copper worldwide from 2010 to 2023. 2024f. Disponível em: https://www.statista.com/statistics/254839/copper-production-by-country/. Acesso em: 10 jul. 2024.

STATISTA. Rare earths mine production in Myanmar 2018-2023. 2024l. Disponível em: https://www.statista.com/statistics/1294383/. Acesso em: 09 jul. 2024.

SVAMPA, M. Las fronteras del neoextractivismo en América Latina. Cidade do México/México: CALAS, 2019.

USGS - United States Geological Survey. Cobalt: data in metric tons, cobalt content, unless otherwise specified. [S.L.]: USGS Publications, 2024. 2 p. Mineral Commodity Summaries. Disponível em: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-cobalt.pdf. Acesso em: 22 ago. 2024.

VAN ZALK, J.; BEHRENS, P. The spatial extent of renewable and non-renewable power generation: a review and meta-analysis of power densities and their application in the U.S. Energy Policy, [S.L.], v. 123, p. 83-91, dez. 2018. http://dx.doi.org/10.1016/j.enpol.2018.08.023.

WATARI, T. et al. Total material requirement for the global energy transition to 2050: a focus on transport and electricity. Resources, Conservation and Recycling, [S.L.], v. 148, p. 91-103, set. 2019. http://dx.doi.org/10.1016/j.resconrec.2019.05.015.

ZANETTA-COLOMBO, N. C. et al. Impact of mining on the metal content of dust in indigenous villages of northern Chile. Environment International, [S.L.], v. 169, p. 107490, nov. 2022. http://dx.doi.org/10.1016/j.envint.2022.107490.

ZHANG, T. et al. Allocating environmental costs of China's rare earth production to global consumption. Science of the Total Environment, [S.L.], v. 831, p. 154934, jul. 2022. http://dx.doi.org/10.1016/j.scitotenv.2022.154934.
Published
06/06/2025
How to Cite
STACCIARINI, João Henrique Santana; GONÇALVES, Ricardo Junior de Assis Fernandes. Energy Transition and Mining in the Global South. Mercator, Fortaleza, v. 24, june 2025. ISSN 1984-2201. Available at: <http://www.mercator.ufc.br/mercator/article/view/e24009>. Date accessed: 17 aug. 2025. doi: https://doi.org/10.4215/rm2025.e24009.
Section
ARTICLES