ENVIRONMENTAL FRAGILITY BY MACHINE LEARNING ALGORITHMS
Abstract
The advancement of predictive models by Machine Learning Algorithms (ML) associated with environmental data enables the improvement of models of environmental fragility, which are essential tools for decision-making. This study aimed to derive a prediction of environmental fragility by testing ML associated with environmental covariates in the state of Minas Gerais. We use physical-environmental variables (soil, geology, climate, relief) with a weight of fragility for the attributes and calculation of the average to obtain a model of Potential Environmental Fragility (PEF). Subsequently, we extracted the PEF values to a 4,800-point grid, which was used to generate a new prediction by ML called PEFML. This prediction was based on testing five algorithms and a set of 105 environmental covariates. The results indicated that the best-performing PEFML prediction was the Random Forest model (R2 0.59 and RMSE 0.47), indicating a predominance of the low environmental fragility level. The PEF and PEFML models have strong correlations (0.7 Pearson); however, PEFML has stronger correlations with other environmental data. Therefore, the PEFML prediction is a robust model that captures information from covariates and has coherent spatial patterns.
Keywords: Environmental fragility model; Spatial prediction; Random Forest; Environmental planning.
References
AMORIM, A.T., DO NASCIMENTO LOPES, E.R., DE SOUSA, J.A.P., DE CASSIA FERREIRA DA SILVA, R., DE SOUZA, J.C., LOURENÇO, R.W. (2021). Geomorphometric Environmental Fragility of a Watershed: A Multicriteria Spatial Approach. Environ. Monit. Assess., v.193, p.850.
ANJINHO, P.D.S., BARBOSA, M.A.G.A., COSTA, C.W., MAUAD, F.F. (2021). Environmental Fragility Analysis in Reservoir Drainage Basin Land Use Planning: A Brazilian Basin Case Study. Land Use Policy, v.100, p.104946.
BARROS, K.O., ALVARES SOARES RIBEIRO, C.A., MARCATTI, G.E., LORENZON, A.S., MARTINS DE CASTRO, N.L., DOMINGUES, G.F., ROMÁRIO DE CARVALHO, J., ROSA DOS SANTOS, A. (2018). Markov Chains and Cellular Automata to Predict Environments Subject to Desertification. Journal of Environmental Management, v.225, p.160-167.
BERGEN, K.J., JOHNSON, P.A., DE HOOP, M.V., BEROZA, G.C. (2019). Machine Learning for Data-Driven Discovery in Solid Earth Geoscience. Science, v.363, p.eaau0323.
BREIMAN, L. (2001). Random Forests. Machine Learning, v.45, p.5-32.
BRUNGARD, C.W., BOETTINGER, J.L., DUNIWAY, M.C., WILLS, S.A., EDWARDS, T.C. (2015). Machine Learning for Predicting Soil Classes in Three Semi-Arid Landscapes. Geoderma, v.239, p.68-83.
CALLISTO, M., GONÇALVES, J.F., LIGEIRO, R. (2016). Water Resources in the Rupestrian Grasslands of the Espinhaço Mountains. In: G.W. Fernandes (Eds.) Ecology and Conservation of Mountaintop Grasslands in Brazil. Cham: Springer International Publishing, 2016. 87-102.
CAMPOS, J.A., AIRES, U.R.V., SILVA, D.D.D., CALIJURI, M.L. (2019). Environmental Fragility and Vegetation Cover Dynamics in the Lapa Grande State Park, Mg, Brazil An Acad Bras Cienc, v.91, p.e20170940.
CORTES, C., VAPNIK, V. (1995). Support-Vector Networks. Machine Learning, v.20, p.273-297.
COSTA, E.M., DOS ANJOS, L.H.C., PINHEIRO, H.S.K., GELSLEICHTER, Y.A., MARCONDES, R.A.T. (2020). Spatial Bayesian Belief Networks: A Participatory Approach for Mapping Environmental Vulnerability at the Itatiaia National Park, Brazil. Environmental Earth Sciences, v.79, p.359.
COSTA, L.R.F. (2021). Considerações Sobre as Macrounidades Geomorfológicas Do Estado De Minas Gerais–Brasil. William Morris Davis–Revista de Geomorfologia, v.2, p.11-18.
CREPANI, E., MEDEIROS, J.D., HERNANDEZ FILHO, P., FLORENZANO, T.G., DUARTE, V., BARBOSA, C.C.F. (2001). Sensoriamento Remoto E Geoprocessamento Aplicados Ao Zoneamento Ecológico-Econômico E Ao Ordenamento Territorial. São José dos Campos: Inpe 2001. 124.
CRUZ, B.B., MANFRÉ, L.A., RICCI, D.S., BRUNORO, D., APPOLINARIO JR., L., QUINTANILHA, J.A. (2017). Environmental Fragility Framework for Water Supply Systems: A Case Study in the Paulista Macro Metropolis Area (Se Brazil). Environmental Earth Sciences, v.76, p.441-453.
DIAS, S.H.B., FILGUEIRAS, R., FERNANDES FILHO, E.I., ARCANJO, G.S., SILVA, G.H.D., MANTOVANI, E.C., CUNHA, F.F.D. (2021). Reference Evapotranspiration of Brazil Modeled with Machine Learning Techniques and Remote Sensing. PLOS ONE, v.16, p.e0245834.
FARAWAY, J. (2016). Linear Models with R. Chapman Hall. New York: Chapman and Hall, 2016. 270.
FRANCO, G.B. Fragilidade Ambiental E Qualidade Da Água Na Bacia Do Rio Almada – Bahia. 2010. 361 p.f. Doutorado - Universidade Federal de Viçosa, Viçosa, MG, 2010., 2010.
FRANCO, G.B., MARQUES, E.A.G., GOMES, R.L., CHAGAS, C.D.S., SOUZA, C.M.P., BETIM, L.S. (2011). Fragilidade Ambiental Da Bacia Hidrográfica Do Rio Almada-Bahia. Rev Geog, v.28, p.187 - 205.
GALLANT, J.C., DOWLING, T.I. (2003). A Multiresolution Index of Valley Bottom Flatness for Mapping Depositional Areas. Water Resour. Res., v.39,
GOMES, L.C., FARIA, R.M., SOUZA, E., VELOSO, G.V., SCHAEFER, C.E.G.R., FERNANDES FILHO, E.I. (2019). Modelling and Mapping Soil Organic Carbon Stocks in Brazil. Geoderma, v.340, p.337-350.
GUEVARA, Y.Z.C., SOUZA, J.J.L.L.D., VELOSO, G.V., VELOSO, R.W., ROCHA, P.A., ABRAHÃO, W.A.P., FERNANDES FILHO, E.I. (2018). Reference Values of Soil Quality for the Rio Doce Basin. Rev. Bras. Ciên. Solo v.42, p.1-16.
HASTIE, T., TIBSHIRANI, R. (1987). Generalized Additive Models: Some Applications. Journal of the American Statistical Association, v.82, p.371-386.
HEINECK, C.A., LEITE, C.A.D.S., SILVA, M., VIEIRA, V.S. (2003). Mapa Geológico Do Estado De Minas Gerais, Escala 1: 1.000. 000. Belo Horizonte: Convênio COMIG/CPRM, v.1,
HIJMANS, R.J., CAMERON, S.E., PARRA, J.L., JONES, P.G., JARVIS, A. (2005). Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol., v.25, p.1965-1978.
IGLESIAS, M., UHLEIN, A. (2009). Estratigrafia Do Grupo Bambuí E Coberturas Fanerozóicas No Vale Do Rio São Francisco, Norte De Minas Gerais. Braz. J. Geol, v.39, p.256-266.
KER, J.C. (1997). Latossolos Do Brasil: Uma Revisão. Revista Geonomos, v.5, p.17 - 40.
KUHN, M., JOHNSON, K. (2013). Applied Predictive Modeling. New York: Springer, 2013. 600.
MALONE, B.P., MCBRATNEY, A.B., MINASNY, B., LASLETT, G.M. (2009). Mapping Continuous Depth Functions of Soil Carbon Storage and Available Water Capacity. Geoderma, v.154, p.138-152.
MARTINS, T.I.S., RODRIGUES, S.C. (2012). Análise E Mapeamento Dos Graus De Fragilidade Ambiental Da Bacia Do Médio-Baixo Curso Do Rio Araguari, Minas Gerais. Caderno de Geografia, v.22,
MORELLOS, A., PANTAZI, X.-E., MOSHOU, D., ALEXANDRIDIS, T., WHETTON, R., TZIOTZIOS, G., WIEBENSOHN, J., BILL, R., MOUAZEN, A.M. (2016). Machine Learning Based Prediction of Soil Total Nitrogen, Organic Carbon and Moisture Content by Using Vis-Nir Spectroscopy. Biosyst Eng, v.152, p.104-116.
MOTTA, P.E., CURI, N., FRANZMEIER, D.P. (2002). Relation of Soils and Geomorphic Surfaces in the Brazilian Cerrado. In: P. Oliveira, R.J. Marquis (Eds.) The Cerrados of Brazil: Ecology Natural History of a Neotropical Savanna. New York: Columbia University Press, 2002. 13-32.
MURRAY, A.B., LAZARUS, E., ASHTON, A., BAAS, A., COCO, G., COULTHARD, T., FONSTAD, M., HAFF, P., MCNAMARA, D., PAOLA, C., PELLETIER, J., REINHARDT, L. (2009). Geomorphology, Complexity, and the Emerging Science of the Earth's Surface. Geomorphology, v.103, p.496-505.
NUNES, W.A.G.A., KER, J.C., SCHAEFER, C.E.G.R., FERNANDES FILHO, E.I., GOMES, F.H. (2001). Relação Solo-Paisagem-Material De Origem E Gênese De Alguns Solos No Domínio Do "Mar De Morros", Minas Gerais Rev. Bras. Ciên. Solo v.25, p.341-354.
PADARIAN, J., MINASNY, B., MCBRATNEY, A.B. (2020). Machine Learning and Soil Sciences: A Review Aided by Machine Learning Tools. SOIL, v.6, p.35-52.
PESSOA, P., ATMAN, D., KIMURA, G. (2020). Environmental Problems in the Lagoa Santa Karst. In: A. S. Auler, P. Pessoa (Eds.) Lagoa Santa Karst: Brazil's Iconic Karst Region. Cham: Springer International Publishing, 2020. 283-303.
Quinlan, J.R. (1992). Learning with Continuous Classes. (Eds.), Australian joint conference on artificial intelligence, pp. 343-348.
Rcore, T. (2022). R: A Language and Environment for Statistical Computing. Vienna, Austria (2016). http://www.R-project.org/ 15 june 2022.
ROSS, J.L.S. (1994). Análise Empírica Da Fragilidade Dos Ambientes Naturais Antropizados. Revista do departamento de geografia, v.8, p.63-74.
SALGADO, A.A.R., BRAUCHER, R., COLIN, F., NALINI, H.A., VARAJÃO, A.F.D.C., VARAJÃO, C.A.C. (2006). Denudation Rates of the Quadrilátero Ferrífero (Minas Gerais, Brazil): Preliminary Results from Measurements of Solute Fluxes in Rivers and in Situ-Produced Cosmogenic 10be. J. Geochem. Explor., v.88, p.313-317.
SCOLFORO, J.R., OLIVEIRA, A., CARVALHO, L.D., MARQUES, J.J.G., LOUZADA, J.N., MELLO, C., PEREIRA, J.R., REZENDE, J.B., VALE, L.C.C. (2008). Zoneamento Ecológico-Econômico De Minas Gerais. Lavras: UFLA, 2008.
SENA, N.C., VELOSO, G.V., FILHO, E.I.F., FRANCELINO, M.R., SCHAEFER, C.E.G.R. (2020). Analysis of Terrain Attributes in Different Spatial Resolutions for Digital Soil Mapping Application in Southeastern Brazil. Geoderma Regional, p.e00268.
SILVA, L.C.L., OLIVEIRA, F.S., RAMOS, V.D.V., SCHAEFER, C.E.G. (2018). Pedodiversidade No Estado De Minas Gerais-Brasil. Caderno de Geografia, v.28, p.18-38.
SIMÕES, P.L., VALADÃO, R.C., OLIVEIRA, C.V., OLIVEIRA, F.S. (2020). Uso De Atributos Pedológicos Na Compreensão Da Gênese De Superfícies Geomorfológicas Escalonadas Da Borda Oeste Do Planalto Do Espinhaço Meridional / Minas Gerais – Brasil. Revista Brasileira de Geomorfologia, v.21,
SOUZA, C.M.P., FIGUEIREDO, N.A., COSTA, L.M., VELOSO, G.V., ALMEIDA, M.I.S., FERREIRA, E.J. (2020). Machine Learning Algorithm in the Prediction of Geomorphic Indices for Appraisal the Influence of Landscape Structure on Fluvial Systems, Southeastern - Brazil. Revista Brasileira de Geomorfologia, v.21, p.363-378.
SOUZA, C.M.P., VELOSO, G.V., MELLO, C.R., RIBEIRO, R.P., PEREIRA SILVA, L.A., LEITE, M.E., FERNANDES FILHO, E.I. (2022). Spatiotemporal Prediction of Rainfall Erosivity by Machine Learning, Minas Gerais State, Brazil. Geocart. Internat., v.37, p.1-19.
SPÖRL, C., CASTRO, E., LUCHIARI, A. (2011). Aplicação De Redes Neurais Artificiais Na Construção De Modelos De Fragilidade Ambiental. Revista do Departamento de Geografia, v.21, p.113-135.
SPRÖL, C., ROSS, J.L.S. (2006). Análise Comparativa Da Fragilidade Ambiental Com Aplicação De Três Modelos. Geousp, p.39-49.
TRICART, J. (1977). Ecodynamic. Rio de Janeiro: IBGE, 1977. 91.
UFV, CETEC, UFLA, FEAM. (2010). Mapa De Solos Do Estado De Minas Gerais. p.49.
URRIAGO-OSPINA, L.M., JARDIM, C.M., RIVERA-FERNÁNDEZ, G., KOZOVITS, A.R., LEITE, M.G.P., MESSIAS, M.C.T.B. (2021). Traditional Ecological Knowledge in a Ferruginous Ecosystem Management: Lessons for Diversifying Land Use. Environ Dev Sustain, v.23, p.2092-2121.
Usgs. (2022). Earthexplorer Disponível em:< http://earthexplorer.usgs.gov> 03 março 2022.
WANG, Z., SHI, W., ZHOU, W., LI, X., YUE, T. (2020). Comparison of Additive and Isometric Log-Ratio Transformations Combined with Machine Learning and Regression Kriging Models for Mapping Soil Particle Size Fractions. Geoderma, v.365, p.114214.
WERE, K., BUI, D.T., DICK, Ø.B., SINGH, B.R. (2015). A Comparative Assessment of Support Vector Regression, Artificial Neural Networks, and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks across an Afromontane Landscape. Ecological Indicators, v.52, p.394-403.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant MERCATOR the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License, which allows the sharing of the work with recognition of the authorship of the work and initial publication in this journal.
- Authors are authorized to sign additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (e.g., publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase the impact and citation of the published work (see The Effect of Free Access).
- Authors are responsible for the content of the manuscript published in the journal.