NEW METHODOLOGICAL APPROACH FOR THE ANALYSIS OF SOCIAL ASPECTS IN THE LIFE CYCLE ASSESSMENT OF LITHIUM-ION BATTERIES PRODUCTION
Abstract
The objective of the present work is to propose a new methodology for the analysis of social aspects in Life Cycle Analysis focused on battery production. Moreover, a systematic literature review was carried out, presenting the main existing gaps and opportunities for future research on the social aspects that involve the analysis of the battery life cycle. Scientific articles, mainly those published between the years 2020 and 2024 were analyzed, in addition to the use of gray literature review. One of the main obstacles encountered was the low number of articles published specifically on social life cycle assessment (S-LCA) of batteries, in addition to the existence of a second flaw pointed out by other authors, which is the deficiency in the methodology used in S-LCA. The text presents approach recommendations and suggests future directions. The literature review is the first to specifically evaluate the state of the art of publications on S-LCA and batteries, presenting a suggestion for S-LCA.
Keywords: Lithium-ion battery; Social impacts; Social Lifecycle Assessment.
References
Bamana, G., Miller, J. D., Young, S. L., Dunn, J. B., 2021. Addressing the social life cycle inventory analysis data gap: Insights from a case study of cobalt mining in the Democratic Republic of Congo. One Earth. 4, 1704-1714. https://doi.org/10.1016/j.oneear.2021.11.007
Benoît, C., Norris, G.A., Valdivia, S., Ciroth, A., Moberg, A., Bos, U., Prakash, S., Ugaya, C., Beck, T., 2010. The guidelines for social life cycle assessment of products: just in time! The Int. J. of LCA. 15, 156–163. https://doi.org/10.1007/s11367-009-0147-8
Bermúdez-Rodrígues, T and Consoni, F. L., 2020. An approach to the dynamics of the scientific and technological development of lithium-ion batteries for electric vehicles. BR. Innovation J. Campinas (SP), 19, e0200014, p. 1-33.
Boeselager, C., Kapelar, M. O., Dröder, K., 2022. Multi-Body Simulation of a Novel Electrode Stacking Process for LithiumIon Battery Production. Procedia. 112, 519-524. https://doi.org/10.1016/j.procir.2022.09.092
Borri, E., Zsembinszki, G., Cabeza, L. F., 2024. Evaluation of the social impact of an energy system for residential heating applications based on a novel seasonal thermal energy storage. J. of En. Storage. vol. 86, 111210. https://doi.org/10.1016/j.est.2024.111210
Breuer, A., Leininger, J., Malerba, D., Tosun, J., 2023. Integrated policymaking: Institutional designs for implementing the sustainable development goals (SDGs). Wld. Dev. 170, 106317. https://doi.org/10.1016/j.worlddev.2023.106317
Buck, F., Imdahl, C., Dilger, N., Zellmer, S., Herrmann, C., 2023. Simulation-based planning of process chains and production environments for solid-state batteries. Procedia. 116, 426-431. https://doi.org/10.1016/j.procir.2023.02.072
Chaves, A. S., 2021. Clean electricity technologies can solve the climate crisis. BR. J. of Phys. Teach. vol. 43, e20210361.
Costa, D., Quinteiro, P., Pereira, V., Dias, A. C., 2022. Social life cycle assessment based on input/output analysis of the Portuguese pulp and paper sector. J. of Clnr. Prod. v. 330, 129851. https://doi.org/10.1016/j.jclepro.2021.129851
Del-Aguila-Arcentales, S., Alvarez-Risco, A., Jaramillo-Arévalo, M., De-la-Cruz-Diaz, M., Anderson-Seminario, M. M., 2022. Influence of Social, Environmental and Economic Sustainable Development Goals (SDGs) over Continuation of Entrepreneurship and Competitiveness. J. of Open Innovation Tech. Mark. and Complex. 8, 2-24. https://doi.org/10.3390/joitmc8020073
Domingues, A. M., Souza, R. G., Luiz, J. V. R., 2024. Lifecycle social impacts of lithium-ion batteries: Consequences and future research agenda for a safe and just transition. Energy Research & Social Science. 118, 103756. https://doi.org/10.1016/j.erss.2024.103756
Finkbeiner, M., Schau, E. M., Lehmann, A., Traverso, M., 2010. Towards Life Cycle Sustainability Assessment. Sustain. 2, 3309-3322. https://doi.org/10.3390/su2103309
Giovanetti, J and Cleto, M. G., 2018. Impact of product certification in the Brazilian automotive batteries industry: a case study. Mgmt. Prod. São Carlos, v. 25, no. 2, p. 304-318.
Haddad, Y., Yuksek, Y. A., Jagtap, S., Jenkins, S., Pagone, E., Salonitis, K., 2023. Eco-social sustainability assessment of manufacturing systems: an LCA-based framework. Procedia CIRP. vol. 116, p. 312-317. https://doi.org/10.1016/j.procir.2023.02.053
International Organization for Standardization (ISO)., 2019. ISO 14040:2006 – Environmental management, life cycle assessment, principles and framework. Available at: < https://www.iso.org/standard/37456.html>. Accessed in: 19 Apr. 2024.
HuntKey., 2024. The most comprehensive guide to battery life cycle. Available at: < https://www.huntkeyenergystorage.com/battery-life-cycle/>. Accessed in: 05 Dec. 2024.
Jayasanka, T. A. D. K., Darko, A., Edwards, D. J., Chan, A. P. C., Jalaei, F., 2024. Automating building environmental assessment: A systematic review and future research directions. Envr. Impact. Assmt. Rev. 106, 107465. https://doi.org/10.1016/j.eiar.2024.107465
Kies, A. D., Krauß, J., Schmetz, A., Schmitt, R. H., Brecher, C., 2022. Interaction of Digital Twins in a Sustainable Battery Cell Production. Procedia. 107, 1216-1220. https://doi.org/10.1016/j.procir.2022.05.134
Kokare, S., Oliveira, J. P., Godina, R., 2023. Life cycle assessment of additive manufacturing processes: A review. J. of Mfg. Sys. vol. 68, p. 536-559. https://doi.org/10.1016/j.jmsy.2023.05.007
Kouloumpis, V., Konstantzos, G. E., Chroni, C., Abeliotis, K., Lasaridi, K., 2023. Does the circularity end justify the means? A life cycle assessment of preparing waste electrical and electronic equipment for reuse. Susble. Prod. Cons. 41, 291-304. https://doi.org/10.1016/j.spc.2023.08.008
Larsen, V. G., Tollin, N., Sattrup. P. A., Birkved, M., Holmboe, T., 2022. What are the challenges in assessing circular economy for the built environment? A literature review on integrating LCA, LCC and S-LCA in life cycle sustainability assessment, LCSA. J. of Bldg. Eng. vol. 50, 104203. https://doi.org/10.1016/j.jobe.2022.104203
Leal, V. M., Ribeiro, J. S., Coelho, E. L. D., Freitas, M. B. J. G., 2023. Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. J. of En. Chem. 79, 118-134. https://doi.org/10.1016/j.jechem.2022.08.005
Maisel, F., Neef, C., Marscheider-Weidemann, F., Nissen, N. F., 2023. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Res, Conserv. & Recycl. 192, 106920. https://doi.org/10.1016/j.resconrec.2023.106920
Mármol, C., Martín-Mariscal, A., Picardo, A., Peralta, E., 2023. Social life cycle assessment for industrial product development: A comprehensive review and analysis. Heliyon. vol. 9, 22861. https://doi.org/10.1016/j.heliyon.2023.e22861
McMahon, K., Mugge, R., Hultink, E. J., 2024. Overcoming barriers to circularity for internal ICT management in organizations: A change management approach. Res. Conserv. & Recycl. 205, 107568. https://doi.org/10.1016/j.resconrec.2024.107568
Minozzo, R., Minozzo, E. L., Deimling, L. I., Santos-Mello, R., 2008. Plumbemia in workers in the automotive battery recycling industry in Greater Porto Alegre, RS. BR. J. of Pathol. and Lab. Med. v. 44, n. 6, p. 407-412. https://doi.org/10.1590/S1676-24442008000600003
Nakhle, P., Stamos, I., Proietti, P., Siragusa, A., 2024. Environmental monitoring in European regions using the sustainable development goals (SDG) framework. Envi. and Sustain. Ind. 21, 100332. https://doi.org/10.1016/j.indic.2023.100332
Palomero, J. C., Freboeuf, L., Ciroth, A., Sonnemman, G., 2024. Integrating circularity into Life Cycle Assessment: Circularity with a life cycle perspective. Clnr. Envir. Sys. 12, 100175. https://doi.org/10.1016/j.cesys.2024.100175
Pradhan, B. K., Yadav, S., Ghosh, J., Prashad, A., 2023. Achieving the Sustainable Development Goals (SDGs) in the Indian State of Odisha: Challenges and Opportunities. Wrd. Dev. Sustain. 3, 100078. https://doi.org/10.1016/j.wds.2023.100078
Rebolledo-Leiva, R., Moreira, M. T., González-García, S., 2023. Progress of social assessment in the framework of bioeconomy under a life cycle perspective. Renew. and Sustain. En. Rev. 175, 113162. https://doi.org/10.1016/j.rser.2023.113162
Rohkohl, E., Schönemann, M., Bodrov, Y., Herrmann, C., 2023. Multi-criteria and real-time control of continuous battery cell production steps using deep learning. Adv. Ind. and Mfg. Eng. 6, 100108. https://doi.org/10.1016/j.aime.2022.100108
Samani, P., 2023. Synergies and gaps between circularity assessment and Life Cycle Assessment (LCA). Sci. of the Tot. Environ. vol. 903, 166611. https://doi.org/10.1016/j.scitotenv.2023.166611
Sazdovski, I., Batlle-Bayer, L., Bala, A., Margallo, M., Azarkamand, S., Aldaco, R., Fullana-i-Palmer, P., 2024. Comparative assessment of two circularity indicators for the case of reusable versus single-use secondary packages for fresh foods in Spain. Heliyon. 10, e27922. https://doi.org/10.1016/j.heliyon.2024.e27922
Scheller, C., Kishita, Y., Blömeke, S., Thies, C., Schmidt, K., Mennenga, M., Herrmann, C., Spengler, T. S., 2023. Designing robust transformation toward a sustainable circular battery production. Procedia. 116, 408-413. https://doi.org/10.1016/j.procir.2023.02.069
Shafiei, K., Zadeh, S. G., Hagh, M. T., 2024. Planning for a network system with renewable resources and battery energy storage, focused on enhancing resilience. J. of En. Stor. 87, 111339. https://doi.org/10.1016/j.est.2024.111339
Shi, Y., Chen, X., Jiang, T., Jin, Q., 2023. Social life cycle assessment of lithium iron phosphate battery production in China, Japan and South Korea based on external supply materials. Sustain. Prod. and Cons. 35, 525-538. https://doi.org/10.1016/j.spc.2022.11.021
Skare, M., Gavurova, B., Kovac, V., 2024. Mitigating resource curse impact through implementing circular economy effective strategies. Res. Pol. 92, 104962. https://doi.org/10.1016/j.resourpol.2024.104962
Springer, S. K., Wulf, C., Zapp, P., 2024. Potential Social Impacts regarding working
conditions of Fuel Cell Electric Vehicles. Int. J. of H. En. 52, 618-632. https://doi.org/10.1016/j.ijhydene.2023.04.034
Tancin, R. J., Özdoğru, B., Dutta, N. S., Finegan, D, P., Villers, B. J. T., 2024. Direct reuse of graphite and lithium nickel manganese cobalt oxide (NMC) recovered from ultrafast-laser ablation debris in Li-ion battery electrodes. J. of Pwr. Sources. 596, 234027. https://doi.org/10.1016/j.jpowsour.2023.234027
Toosi, H. A., Lavagna, M., Leonforte, F., Del Pero, C., Aste, N., 2022. A novel LCSA-Machine learning based optimization model for sustainable building design-A case study of energy storage systems. Bldg. and Environ. 209, 108656. https://doi.org/10.1016/j.buildenv.2021.108656
Tsalidis, G. A., Xevgenos, D., Ktori, R., Krishnan, A., Posada, J. A., 2023. Social life cycle assessment of a desalination and resource recovery plant on a remote island: Analysis of generic and site-specific perspectives. Sustain. Prod. and Cons. v. 37, 412-423. https://doi.org/10.1016/j.spc.2023.03.017
Tulve, N. S., Geller, A. M., Hagerthey, S., Julius, S. H., Lavoie, E. T., Mazur, S. L., Paul, S. J., Frey, H. C., 2024. Challenges and opportunities for research supporting cumulative impact assessments at the United States environmental protection agency’s office of research and development. The Lancet Regional Health – Americas. 30, 1-7.
United Nations. The 17 Goals. Available at:
Vogt, M and Herrmann, C., 2021. Energy efficiency of technical building services in production environments – Application to dry rooms in battery production. CIRP Annals – Manufacturing Technology. 70, 21-24. https://doi.org/10.1016/j.cirp.2021.03.020
US. Rsc. Conserv. & Recycl. 201, 107218. https://doi.org/10.1016/j.resconrec.2023.107218
Zakari, A., Khan, I., Tan, D., Alvarado, R., Dagar, V., 2022. Energy efficiency and sustainable development goals (SDGs). En. 239, 122365. https://doi.org/10.1016/j.energy.2021.122365
Zhou, H., Li, W., Poulet, T., Basarir, H., Karrech, A., 2024. Life cycle assessment of recycling lithium-ion battery related mineral processing by-products: A review. Minerals Eng. 208, 108600. https://doi.org/10.1016/j.mineng.2024.108600
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant MERCATOR the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License, which allows the sharing of the work with recognition of the authorship of the work and initial publication in this journal.
- Authors are authorized to sign additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (e.g., publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase the impact and citation of the published work (see The Effect of Free Access).
- Authors are responsible for the content of the manuscript published in the journal.