NEW METHODOLOGICAL APPROACH FOR THE ANALYSIS OF SOCIAL ASPECTS IN THE LIFE CYCLE ASSESSMENT OF LITHIUM-ION BATTERIES PRODUCTION

Abstract

The objective of the present work is to propose a new methodology for the analysis of social aspects in Life Cycle Analysis focused on battery production. Moreover, a systematic literature review was carried out, presenting the main existing gaps and opportunities for future research on the social aspects that involve the analysis of the battery life cycle. Scientific articles, mainly those published between the years 2020 and 2024 were analyzed, in addition to the use of gray literature review. One of the main obstacles encountered was the low number of articles published specifically on social life cycle assessment (S-LCA) of batteries, in addition to the existence of a second flaw pointed out by other authors, which is the deficiency in the methodology used in S-LCA. The text presents approach recommendations and suggests future directions. The literature review is the first to specifically evaluate the state of the art of publications on S-LCA and batteries, presenting a suggestion for S-LCA.

Keywords: Lithium-ion battery; Social impacts; Social Lifecycle Assessment.

Author Biography

Eva de Melo Ferreira, Vietnamese-German University, Bình Dương, Vietnam

Ph.D., she did another MBA in Waste and Wastewater Management. In 2016, she was among five Brazilians selected by the Erasmus Mundus Association to receive the IBrasil scholarship to do a Sandwich Doctorate in Europe for 10 months. She was hired by the Erasmus Mundus Association to evaluate environmental management policies in Central Europe, specifically in Slovakia and Austria. During this time, she acquired in-depth knowledge about European Environmental Policies. With this opportunity she learned about different realities and presented Brazil at the International Conference of Young Scientists and Doctoral Students in Europe. Dr. Eva Ferreira has a Ph.D. in Sanitation, Environment and Water Resources, with M.Sc. in Agronomy, an MBA in Project Management, an MBA in Environmental Planning and Management and an MBA in Treatment and Final Disposal of Waste and Wastewater. At the age of 27, after completing her Ph.D. in 2019 at the Federal University of Minas Gerais, Brazil, she has been working as a Lecturer in Brazil (Federal University of Goiás and University of São Paulo), Vietnam (Vietnamese-German University), and Researcher in Portugal (University of Aveiro), the Netherlands (Royal Netherlands Academy of Arts and Sciences) and Czech Republic (Tomas Bata University). Her main topics are Environmental Management and Public Policy, Soil Sciences and Water Management.

References

Abdelbaky, M., Schwich, L., Henriques, J., Friedrich, B., Peeters, J. R., Dewulf, W., 2023. Global warming potential of lithium-ion battery cell production: Determining influential primary and secondary raw material supply routes. Clnr. Log. and Sup. Ch. 9, 100130. https://doi.org/10.1016/j.clscn.2023.100130

Bamana, G., Miller, J. D., Young, S. L., Dunn, J. B., 2021. Addressing the social life cycle inventory analysis data gap: Insights from a case study of cobalt mining in the Democratic Republic of Congo. One Earth. 4, 1704-1714. https://doi.org/10.1016/j.oneear.2021.11.007

Benoît, C., Norris, G.A., Valdivia, S., Ciroth, A., Moberg, A., Bos, U., Prakash, S., Ugaya, C., Beck, T., 2010. The guidelines for social life cycle assessment of products: just in time! The Int. J. of LCA. 15, 156–163. https://doi.org/10.1007/s11367-009-0147-8

Bermúdez-Rodrígues, T and Consoni, F. L., 2020. An approach to the dynamics of the scientific and technological development of lithium-ion batteries for electric vehicles. BR. Innovation J. Campinas (SP), 19, e0200014, p. 1-33.

Boeselager, C., Kapelar, M. O., Dröder, K., 2022. Multi-Body Simulation of a Novel Electrode Stacking Process for LithiumIon Battery Production. Procedia. 112, 519-524. https://doi.org/10.1016/j.procir.2022.09.092

Borri, E., Zsembinszki, G., Cabeza, L. F., 2024. Evaluation of the social impact of an energy system for residential heating applications based on a novel seasonal thermal energy storage. J. of En. Storage. vol. 86, 111210. https://doi.org/10.1016/j.est.2024.111210

Breuer, A., Leininger, J., Malerba, D., Tosun, J., 2023. Integrated policymaking: Institutional designs for implementing the sustainable development goals (SDGs). Wld. Dev. 170, 106317. https://doi.org/10.1016/j.worlddev.2023.106317

Buck, F., Imdahl, C., Dilger, N., Zellmer, S., Herrmann, C., 2023. Simulation-based planning of process chains and production environments for solid-state batteries. Procedia. 116, 426-431. https://doi.org/10.1016/j.procir.2023.02.072

Chaves, A. S., 2021. Clean electricity technologies can solve the climate crisis. BR. J. of Phys. Teach. vol. 43, e20210361.

Costa, D., Quinteiro, P., Pereira, V., Dias, A. C., 2022. Social life cycle assessment based on input/output analysis of the Portuguese pulp and paper sector. J. of Clnr. Prod. v. 330, 129851. https://doi.org/10.1016/j.jclepro.2021.129851

Del-Aguila-Arcentales, S., Alvarez-Risco, A., Jaramillo-Arévalo, M., De-la-Cruz-Diaz, M., Anderson-Seminario, M. M., 2022. Influence of Social, Environmental and Economic Sustainable Development Goals (SDGs) over Continuation of Entrepreneurship and Competitiveness. J. of Open Innovation Tech. Mark. and Complex. 8, 2-24. https://doi.org/10.3390/joitmc8020073

Domingues, A. M., Souza, R. G., Luiz, J. V. R., 2024. Lifecycle social impacts of lithium-ion batteries: Consequences and future research agenda for a safe and just transition. Energy Research & Social Science. 118, 103756. https://doi.org/10.1016/j.erss.2024.103756

Finkbeiner, M., Schau, E. M., Lehmann, A., Traverso, M., 2010. Towards Life Cycle Sustainability Assessment. Sustain. 2, 3309-3322. https://doi.org/10.3390/su2103309

Giovanetti, J and Cleto, M. G., 2018. Impact of product certification in the Brazilian automotive batteries industry: a case study. Mgmt. Prod. São Carlos, v. 25, no. 2, p. 304-318.

Haddad, Y., Yuksek, Y. A., Jagtap, S., Jenkins, S., Pagone, E., Salonitis, K., 2023. Eco-social sustainability assessment of manufacturing systems: an LCA-based framework. Procedia CIRP. vol. 116, p. 312-317. https://doi.org/10.1016/j.procir.2023.02.053

International Organization for Standardization (ISO)., 2019. ISO 14040:2006 – Environmental management, life cycle assessment, principles and framework. Available at: < https://www.iso.org/standard/37456.html>. Accessed in: 19 Apr. 2024.

HuntKey., 2024. The most comprehensive guide to battery life cycle. Available at: < https://www.huntkeyenergystorage.com/battery-life-cycle/>. Accessed in: 05 Dec. 2024.

Jayasanka, T. A. D. K., Darko, A., Edwards, D. J., Chan, A. P. C., Jalaei, F., 2024. Automating building environmental assessment: A systematic review and future research directions. Envr. Impact. Assmt. Rev. 106, 107465. https://doi.org/10.1016/j.eiar.2024.107465

Kies, A. D., Krauß, J., Schmetz, A., Schmitt, R. H., Brecher, C., 2022. Interaction of Digital Twins in a Sustainable Battery Cell Production. Procedia. 107, 1216-1220. https://doi.org/10.1016/j.procir.2022.05.134

Kokare, S., Oliveira, J. P., Godina, R., 2023. Life cycle assessment of additive manufacturing processes: A review. J. of Mfg. Sys. vol. 68, p. 536-559. https://doi.org/10.1016/j.jmsy.2023.05.007

Kouloumpis, V., Konstantzos, G. E., Chroni, C., Abeliotis, K., Lasaridi, K., 2023. Does the circularity end justify the means? A life cycle assessment of preparing waste electrical and electronic equipment for reuse. Susble. Prod. Cons. 41, 291-304. https://doi.org/10.1016/j.spc.2023.08.008

Larsen, V. G., Tollin, N., Sattrup. P. A., Birkved, M., Holmboe, T., 2022. What are the challenges in assessing circular economy for the built environment? A literature review on integrating LCA, LCC and S-LCA in life cycle sustainability assessment, LCSA. J. of Bldg. Eng. vol. 50, 104203. https://doi.org/10.1016/j.jobe.2022.104203

Leal, V. M., Ribeiro, J. S., Coelho, E. L. D., Freitas, M. B. J. G., 2023. Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. J. of En. Chem. 79, 118-134. https://doi.org/10.1016/j.jechem.2022.08.005

Maisel, F., Neef, C., Marscheider-Weidemann, F., Nissen, N. F., 2023. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Res, Conserv. & Recycl. 192, 106920. https://doi.org/10.1016/j.resconrec.2023.106920

Mármol, C., Martín-Mariscal, A., Picardo, A., Peralta, E., 2023. Social life cycle assessment for industrial product development: A comprehensive review and analysis. Heliyon. vol. 9, 22861. https://doi.org/10.1016/j.heliyon.2023.e22861

McMahon, K., Mugge, R., Hultink, E. J., 2024. Overcoming barriers to circularity for internal ICT management in organizations: A change management approach. Res. Conserv. & Recycl. 205, 107568. https://doi.org/10.1016/j.resconrec.2024.107568

Minozzo, R., Minozzo, E. L., Deimling, L. I., Santos-Mello, R., 2008. Plumbemia in workers in the automotive battery recycling industry in Greater Porto Alegre, RS. BR. J. of Pathol. and Lab. Med. v. 44, n. 6, p. 407-412. https://doi.org/10.1590/S1676-24442008000600003

Nakhle, P., Stamos, I., Proietti, P., Siragusa, A., 2024. Environmental monitoring in European regions using the sustainable development goals (SDG) framework. Envi. and Sustain. Ind. 21, 100332. https://doi.org/10.1016/j.indic.2023.100332

Palomero, J. C., Freboeuf, L., Ciroth, A., Sonnemman, G., 2024. Integrating circularity into Life Cycle Assessment: Circularity with a life cycle perspective. Clnr. Envir. Sys. 12, 100175. https://doi.org/10.1016/j.cesys.2024.100175

Pradhan, B. K., Yadav, S., Ghosh, J., Prashad, A., 2023. Achieving the Sustainable Development Goals (SDGs) in the Indian State of Odisha: Challenges and Opportunities. Wrd. Dev. Sustain. 3, 100078. https://doi.org/10.1016/j.wds.2023.100078

Rebolledo-Leiva, R., Moreira, M. T., González-García, S., 2023. Progress of social assessment in the framework of bioeconomy under a life cycle perspective. Renew. and Sustain. En. Rev. 175, 113162. https://doi.org/10.1016/j.rser.2023.113162

Rohkohl, E., Schönemann, M., Bodrov, Y., Herrmann, C., 2023. Multi-criteria and real-time control of continuous battery cell production steps using deep learning. Adv. Ind. and Mfg. Eng. 6, 100108. https://doi.org/10.1016/j.aime.2022.100108

Samani, P., 2023. Synergies and gaps between circularity assessment and Life Cycle Assessment (LCA). Sci. of the Tot. Environ. vol. 903, 166611. https://doi.org/10.1016/j.scitotenv.2023.166611

Sazdovski, I., Batlle-Bayer, L., Bala, A., Margallo, M., Azarkamand, S., Aldaco, R., Fullana-i-Palmer, P., 2024. Comparative assessment of two circularity indicators for the case of reusable versus single-use secondary packages for fresh foods in Spain. Heliyon. 10, e27922. https://doi.org/10.1016/j.heliyon.2024.e27922

Scheller, C., Kishita, Y., Blömeke, S., Thies, C., Schmidt, K., Mennenga, M., Herrmann, C., Spengler, T. S., 2023. Designing robust transformation toward a sustainable circular battery production. Procedia. 116, 408-413. https://doi.org/10.1016/j.procir.2023.02.069

Shafiei, K., Zadeh, S. G., Hagh, M. T., 2024. Planning for a network system with renewable resources and battery energy storage, focused on enhancing resilience. J. of En. Stor. 87, 111339. https://doi.org/10.1016/j.est.2024.111339

Shi, Y., Chen, X., Jiang, T., Jin, Q., 2023. Social life cycle assessment of lithium iron phosphate battery production in China, Japan and South Korea based on external supply materials. Sustain. Prod. and Cons. 35, 525-538. https://doi.org/10.1016/j.spc.2022.11.021

Skare, M., Gavurova, B., Kovac, V., 2024. Mitigating resource curse impact through implementing circular economy effective strategies. Res. Pol. 92, 104962. https://doi.org/10.1016/j.resourpol.2024.104962

Springer, S. K., Wulf, C., Zapp, P., 2024. Potential Social Impacts regarding working
conditions of Fuel Cell Electric Vehicles. Int. J. of H. En. 52, 618-632. https://doi.org/10.1016/j.ijhydene.2023.04.034

Tancin, R. J., Özdoğru, B., Dutta, N. S., Finegan, D, P., Villers, B. J. T., 2024. Direct reuse of graphite and lithium nickel manganese cobalt oxide (NMC) recovered from ultrafast-laser ablation debris in Li-ion battery electrodes. J. of Pwr. Sources. 596, 234027. https://doi.org/10.1016/j.jpowsour.2023.234027

Toosi, H. A., Lavagna, M., Leonforte, F., Del Pero, C., Aste, N., 2022. A novel LCSA-Machine learning based optimization model for sustainable building design-A case study of energy storage systems. Bldg. and Environ. 209, 108656. https://doi.org/10.1016/j.buildenv.2021.108656

Tsalidis, G. A., Xevgenos, D., Ktori, R., Krishnan, A., Posada, J. A., 2023. Social life cycle assessment of a desalination and resource recovery plant on a remote island: Analysis of generic and site-specific perspectives. Sustain. Prod. and Cons. v. 37, 412-423. https://doi.org/10.1016/j.spc.2023.03.017

Tulve, N. S., Geller, A. M., Hagerthey, S., Julius, S. H., Lavoie, E. T., Mazur, S. L., Paul, S. J., Frey, H. C., 2024. Challenges and opportunities for research supporting cumulative impact assessments at the United States environmental protection agency’s office of research and development. The Lancet Regional Health – Americas. 30, 1-7.

United Nations. The 17 Goals. Available at: . Accessed in: 11 Apr. 2024.

Vogt, M and Herrmann, C., 2021. Energy efficiency of technical building services in production environments – Application to dry rooms in battery production. CIRP Annals – Manufacturing Technology. 70, 21-24. https://doi.org/10.1016/j.cirp.2021.03.020

US. Rsc. Conserv. & Recycl. 201, 107218. https://doi.org/10.1016/j.resconrec.2023.107218

Zakari, A., Khan, I., Tan, D., Alvarado, R., Dagar, V., 2022. Energy efficiency and sustainable development goals (SDGs). En. 239, 122365. https://doi.org/10.1016/j.energy.2021.122365

Zhou, H., Li, W., Poulet, T., Basarir, H., Karrech, A., 2024. Life cycle assessment of recycling lithium-ion battery related mineral processing by-products: A review. Minerals Eng. 208, 108600. https://doi.org/10.1016/j.mineng.2024.108600
Published
21/06/2025
How to Cite
FERREIRA, Eva de Melo. NEW METHODOLOGICAL APPROACH FOR THE ANALYSIS OF SOCIAL ASPECTS IN THE LIFE CYCLE ASSESSMENT OF LITHIUM-ION BATTERIES PRODUCTION. Mercator, Fortaleza, v. 24, june 2025. ISSN 1984-2201. Available at: <http://www.mercator.ufc.br/mercator/article/view/e24012>. Date accessed: 17 aug. 2025. doi: https://doi.org/10.4215/rm2025.e24012.
Section
ARTICLES